• 제목/요약/키워드: multi-storey buildings

검색결과 64건 처리시간 0.017초

Implementation of bond-slip effects on behaviour of slabs in structures

  • Mousavi, S.S.;Dehestani, M.
    • Computers and Concrete
    • /
    • 제16권2호
    • /
    • pp.311-327
    • /
    • 2015
  • Employing discrete elements for considering bond-slip effects in reinforced concrete structures is very time consuming. In this study, a new modified embedded element method is used to consider the bond-slip phenomenon in structural behavior of reinforced concrete structures. A comprehensive parametric study of RC slabs is performed to determine influence of different variables on structural behavior. The parametric study includes a set of simple models accompanied with complex models such as multi-storey buildings. The procedure includes the decrease in the effective stiffness of steel bar in the layered model. Validation of the proposed model with existing experimental results demonstrates that the model is capable of considering the bond-slip effects in embedded elements. Results demonstrate the significant effect of bond-slip on total behavior of structural members. Concrete characteristic strengths, steel yield stress, bar diameter, concrete coverage and reinforcement ratios are the parameters considered in the parametric study. Results revealed that the overall behavior of slab is significantly affected by bar diameter compared with other parameters. Variation of steel yield stress has insignificant impact in static response of RC slabs; however, its effect in cyclic behavior is important.

A new method to predict the critical incidence angle for buildings under near-fault motions

  • Sebastiani, Paolo E.;Liberatore, Laura;Lucchini, Andrea;Mollaioli, Fabrizio
    • Structural Engineering and Mechanics
    • /
    • 제68권5호
    • /
    • pp.575-589
    • /
    • 2018
  • It is well known that the incidence angle of seismic excitation has an influence on the structural response of buildings, and this effect can be more significant in the case of near-fault signals. However, current seismic codes do not include detailed requirements regarding the direction of application of the seismic action and they have only recently introduced specific provisions about near-fault earthquakes. Thus, engineers have the task of evaluating all the relevant directions or the most critical conditions case by case, in order to avoid underestimating structural demand. To facilitate the identification of the most critical incidence angle, this paper presents a procedure which makes use of a two-degree of freedom model for representing a building. The proposed procedure makes it possible to avoid the extensive computational effort of multiple dynamic analyses with varying angles of incidence of ground motion excitation, which is required if a spatial multi-degree of freedom model is used for representing a building. The procedure is validated through the analysis of two case studies consisting of an eight- and a six-storey reinforced concrete frame building, selected as representative of existing structures located in Italy. A set of 124 near-fault ground motion records oriented along 8 incidence angles, varying from 0 to 180 degrees, with increments of 22.5 degrees, is used to excite the structures. Comparisons between the results obtained with detailed models of the two structures and the proposed procedure are used to show the accuracy of the latter in the prediction of the most critical angle of seismic incidence.

연직접합(鉛直接合)의 강성(剛性)이 프리케스트 전단벽(剪斷壁)의 구조적거동(構造的擧動)에 미치는 영향(影響) I. 하중조합(荷重組合) 1에 대하여 (Influence of the stiffness of Vertical Joints on the Behaviour of Precast Shear Walls. Part1. Load Case 1)

  • 박경호
    • 산업기술연구
    • /
    • 제3권
    • /
    • pp.103-116
    • /
    • 1983
  • Recent developments in multi-storey buildings for residential purpose have led to the extensive use of shear walls for the basic structural system. When the coupled shear wall system is used, joined together with cast-in-place concrete or mortar (or grout), the function of the continuous joints is a crucial factor in determining the safety of L.P. Precast concrete shear wall structures, because the function of the continuous joints(Vertical wall to wall joints) is to transfer froces from one element(shear wall panel) to another, and if sufficient strength and ductility is not developed in the continuous joints, the available strength in the adjoining elements may not be fully utilized. In this paper, the influence of the stiffness of vertical joints(wet vertical keyed shear joints) on the behaviour of precast shear walls is theoretically investigated. To define how the stiffness of the vertical joints affect the load carrying capacity of L.P.Precast concrete shear wall structure, the L.P.Precast concrete shear wall structure is analyzed, with the stiffness of the vertical joints varying from $K=0.07kg/mm^3$(50MN/m/m) to $K=1.43kg/mm^3$(1000MN/m/m), by using the continuous connection method. The results of the analysis shows that at the low values of the vertical stiffness, i.e. from $K=0.07kg/mm^3$(50MN/m/m) to $K=0.57kg/mm^3$(400MN/m/m), the resisting bending moment and shearing force of precast shear walls, the resisting shearing force of vertical joints and connecting beams are significantly affected. The detailed results of analysis are represented in the following figures and Tables.

  • PDF

교정시설의 비상시 피난경로계획 및 USN기반 대피유도활동에 관한 연구 (A Study on Emergency Evacuation Route Planning and USN-Based Induction Activities of Correctional Facilities)

  • 박형주;박종현
    • 한국화재소방학회논문지
    • /
    • 제25권2호
    • /
    • pp.39-46
    • /
    • 2011
  • 다수의 거주자들이 구금되어있는 교정시설에서는 피난경로가 복잡하여 화재발생시 수용자의 도주사고 없이 안전한 대피유도가 가장 중요한 요소이다. 교정시설의 화재발생유형을 살펴보면 단기보호시설, 치료 시설에서는 의도적인 방화로 인한 화재가 많은 반면에, 교도소 및 구치소와 같은 구금시설에서는 노후한 설비 또는 화기취급부주의 등의 원인에 의해 화재가 발생한다. 두 종류의 교정시설 모두 화재가 발생하면 대피가 신속하게 이루어지지 않아 인명피해가 크다는 점에서 동일한 유형을 보인다. 본 논문에서는 교정 시설의 화재사례 및 구조적 취약성을 고려한 비상시 수용자의 대피경로 및 대피유도계획에 대해 고찰하여 화재와 같은 재난 발생 시 구금상태의 거주자를 도주사고 없이 안전하게 대피 유도하기 위해 쇠창살문에 설치된 구금장치의 전자 해정시스템의 도입을 검토하였다. 특히, 복층형 교정시설에서 보안 및 계호공백 없이 수용자의 안전한 대피유도를 실현하기 위해 피난시뮬레이션(SIMULEX)을 실행하여 산정한 필요피난소요시간(RSET)을 기반으로 구금장치의 해정시스템의 효과를 분석하였다. 결론적으로 USN(Ubiquitous Sensor Networks)기술을 활용한 전자보안출입시스템에 원격해정장치를 교정시설에 의무적으로 부착하여야만 구금상태의 수용자가 비상사태 발생 시 도주시도를 방지하면서 적절한 대피가 이루어질 수 있음을 제시하였다.