• 제목/요약/키워드: multi-stage process

검색결과 532건 처리시간 0.024초

마그네슘 합금 AZ31 판재의 온간 드로잉에서의 다단 성형 공정 적용 (Multi-Stage forming Process Applied to Warm Drawing of Magnesium Alloy AZ31 Sheet)

  • 김흥규;김기덕
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.242-245
    • /
    • 2007
  • In the present investigation, the multi-stage warm drawing process was applied to the magnesium alloy AZ31 sheet to examine the feasibility of multi-stage forming process as a high formability product making process. For that purpose, a multi-stage drawing die system with heating module was developed, and the AZ31 sheets of different sizes were consecutively drawn by the multi-stage drawing die. The obtained drawn cups of AZ31 showed that the multi-stage drawing provided the better formability than the single stage drawing in terms of drawing depth without cup defects such as wrinkles or fractures. The sheet formability improvement by using the multi-stage drawing die system against the single stage was also analyzed in terms of the finite element analysis of material state variables evolution.

  • PDF

세장비가 큰 타원형 컵 성형 공정의 다단계 유한요소 역해석 (Multi-stage Finite Element Inverse Analysis of Elliptic Cup Drawing Processes with the Large Aspect Ratio)

  • 김승호;김세호;허훈
    • 소성∙가공
    • /
    • 제9권3호
    • /
    • pp.304-312
    • /
    • 2000
  • An inverse finite element approach is employed to efficiently design the optimum blank shape and intermediate shapes from the desired final shape in multi-stage elliptic cup drawing processes. The multi-stage deep-drawing process is difficult to design with the conventional finite element analysis since the process is very complicate with the conventional finite element analysis since the process is very complicated with intermediate shapes and the numerical analysis undergoes the convergence problem even with tremendous computing time. The elliptic cup drawing process needs much effort to design sine it requires full three-dimensional analysis. The inverse analysis is able to omit all complicated and tedious analysis procedures for the optimum process design. In this paper, the finite element inverse analysis provides the thickness strain distribution of each intermediate shape through the multi-stage analysis. The multi-stage analysis deals with the convergence among intermediate shapes and the corresponding sliding constraint surfaces that are described by the analytic function of merged-arc type surfaces.

  • PDF

다양한 종횡비의 직사각바 다단 인발공정에서 치수정도 향상을 위한 프로세스 맵 (Process Map for Improving the Dimensional Accuracy in the Multi-Stage Drawing Process of Rectangular Bar with Various Aspect Ratio)

  • 고필성;김정훈;김병민
    • 소성∙가공
    • /
    • 제27권3호
    • /
    • pp.154-159
    • /
    • 2018
  • In the rectangular bar multi-stage drawing process, the cross-section dimensional accuracy of the rectangular bar varies depending on the aspect ratio and process conditions. It is very important to predict the dimensional error of the cross-section occurring in the multi-stage drawing process according to the aspect ratio of the rectangular bar and the half die angle of each pass. In this study, a process map for improving the dimensional accuracy according to the aspect ratio was derived in the drawing process of a rectangular bar. FE-simulation of the multi-stage shape drawing process was carried out with four types of rectangular bar. The results of the FE-simulation were trained to the nonlinear relationship between the shape parameters using an Artificial Neural Network (ANN), and the process maps were derived from them. The optimum half die angles were determined from the process maps on the dimensional accuracy. The validity of the suggested process map for aspect ratios 1.25~2:1 were verified through FE-simulation and experimentation.

배치설계를 고려한 다단 기어장치 설계 시스템 개발 (Development of a Design System for Multi-Stage Gear Drives Considering Configuration Design)

  • 정태형;김지철;배인호
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.398-403
    • /
    • 2000
  • The design of multi-stage gear drives is a time-consuming process that includes additional design problems, which are not considered in the design of single-stage gear drives. In the previous research works, the authors have proposed a new algorithm to design multi-stage gear drives at the preliminary design phase. The proposed design algorithm automates the design process by integrating the dimensional design and the configuration design process. In the configuration design process, the positions of gears and shafts are determined by minimizing the geometrical volume (size) of a gearbox. However, various types of spatial constraints should be satisfied in practical design situation. To locate input and output shaft in specified positions is the typical example of such problems. In this paper, the authors show the formulations of spatial constraints applied to the design of four-stage gear drives. The design solution shows considerably good results, and the design system is confirmed to be readily applicable to practical design situation.

  • PDF

세장비가 큰 다단계 초정밀 사각형 디프드로잉을 위한 블랭크 설계 (Blank Design in Multi-Stage Rectangular Deep Drawing of Extreme Aspect Ratio)

  • 박철성;구태완;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.258-261
    • /
    • 2003
  • In this study, finite element analysis for multi-stage deep drawing process of rectangular configuration with extreme aspect ratio is carried out especially for the blank design. The analysis of rectangular deep drawing process with extreme aspect ratio is likewise very difficult with respect to the design process parameters including the intermediate die profile. In order to solve the difficulties, numerical approach using finite element method is performed in the present analysis and design. A series of experiments for multi-stage rectangular deep drawing process are conducted and the deformed configuration is investigated by comparing with the results of the finite element analysis. Additionally, to minimize amount of removal material after trimming process, finite element simulation is applied for the blank modification. The analysis incorporates brick elements for a rigid-plastic finite element method with an explicit time integration scheme using LS-DYNA3D.

  • PDF

비축대칭 와셔 캠 볼트의 다단 단조공정 설계를 위한 유한요소 해석 (Finite Element Analysis for Multi-stage Forging Process Design of Bolt with Nonaxisymmetric Washer Cam)

  • 김관우;김이태;김완종;조해용
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권4호
    • /
    • pp.585-595
    • /
    • 2008
  • Process design of multi-stage forging for a bolt with nonaxisymmetric washer cam has been studied by using finite element method. For shape complexity of the bolt, it is impossible to manufacture in a single stage forging. To design multi-stage forging for the bolt the forging load and fiber flow of each step have been analyzed by using commercial finite element code DEFORM-3D. Simulated results have been compared with experimental ones. Multi-stage forging process has been designed with four stages. The workpiece should be eccentric shape until third forging stage. And then bolt head and washer of eccentrical shape is created in last stage. As a results, It was predicted that shape of product would be good and effective strain would be uniformly distributed in the product. Also, it was predicted whether defects would exist or not by reviewing the fiber flow.

크로스 롤러 가이드 다단 형상인발 공정설계에 관한 연구 (Process Design of Multi-Stage Shape Drawing Process for Cross Roller Guide)

  • 이상곤;이재은;이태규;이선봉;김병민
    • 한국정밀공학회지
    • /
    • 제26권11호
    • /
    • pp.124-130
    • /
    • 2009
  • In the multi-stage shape drawing process, the most important aspect for the economy is the correct design of the various drawing stage. For most of the products commonly available round or square materials can be used as initial material. However, special products should be pre-rolled. This study proposes a process design method of multi-stage shape drawing process for producing cross roller guide. Firstly, a standard classification of shape drawing process is suggested based on the requirement of pre-rolling process. And a design method is proposed to design the intermediate die shape. The process design method is applied to design the multi-stage shape drawing process for producing cross roller guide. Finally, the effectiveness of the proposed design method is verified by FE-analysis and shape drawing experiment.

초경 다단 다이를 적용한 냉간 압조용 인발 선재 제조 (Fabrication of Drawing Wire for Cold Rolling Mill using Tungsten Carbide Multi-Stage Dies)

  • 박동환;현경환;이명준
    • 소성∙가공
    • /
    • 제29권2호
    • /
    • pp.97-102
    • /
    • 2020
  • Wire drawing is a metalworking process used to reduce the cross-section of a wire by pulling the wire through multi-stage drawing dies. The aim of this study is to fabricate a drawing wire using 2 stage drawing process. The finite element analysis of wire drawing was conducted to validate the efficiency of the designed process and the experiment was performed to validate the designed wire drawing process using 2 stage tungsten carbide die. Dry lubricant with powder was applied for producing a wire of desired diameter. Finally, a drawing wire using 2 stage die for cold rolling mill was developed.

Multi-Stage 조립품인 캔-용기 생산 공정에서 동적-외연적 유한요소법을 이용한 성형해석에 관한 연구 (A Study of Forming Analysis by using Dynamic-explicit Finite Element Method in Can-container Production Process of Multi-Stage Assembly)

  • 정동원;황재신
    • 한국기계가공학회지
    • /
    • 제3권3호
    • /
    • pp.58-63
    • /
    • 2004
  • In the present work a finite element formulation using dynamic-explicit time integration scheme is used for numerical analysis of multi-stage stamping processes. The lumping scheme is employed for the diagonal mass matrix and dynamic explicit formulation Multi-Stage stamping is analyzed by using dynamic-explicit finite element method. Further, the simulated results for the panel stamping processes are shown and discussed. Its application is being increased especially in the stamping industrial area for the cost reduction, weight saving, and improvement of strength.

  • PDF

유한요소해석을 이용한 인발 공정 시 Cu-0.2wt%Mg 합금의 변형률 분포에 미치는 마찰계수 영향의 이해 (Understanding the Effect of Friction Coefficient on Strain Distribution in Cu-0.2wt%Mg Alloy during Wire Drawing using Finite Element Analysis)

  • 유태현;백승원;김정호;최시훈
    • 소성∙가공
    • /
    • 제32권1호
    • /
    • pp.35-40
    • /
    • 2023
  • In the case of a wire with a very fine diameter during the multi-stage drawing process, the heterogeneity of the deformation in the radial direction tends to develop strongly as the amount of deformation is accumulated. It is known that the heterogeneity of deformation in the radial direction of the wire is closely related to the process parameters during the multi-stage drawing process. In this study, finite element analysis (FEA) was used to theoretically examine the effect of friction between the surface of the wire and the drawing die during the multi-stage drawing process of Cu-0.2wt%Mg alloy on the deformation heterogeneity developed in the radial direction of the wire. The distribution of effective strain, radial strain, circumferential strain, and shear strain developed in the radial direction of the wire during the multi-stage drawing process was analyzed while changing the friction coefficient, and the results were analyzed and compared for each path and position. The FEA results revealed that the shear strain developed in the radial direction of the wire during the multi-stage drawing process of Cu-0.2wt%Mg alloy showed the most non-uniform distribution and was also severely affected by the friction coefficient.