• 제목/요약/키워드: multi-spectral images

검색결과 225건 처리시간 0.023초

Realizing the Potential of Small-sized Aperture Camera (SAC) in High-Resolution Imaging Age

  • Choi, Young-Wan;Kim, Ee-Eul;Park, Sung-dong
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.642-644
    • /
    • 2003
  • SAC is a compact electro-optical camera for imaging in visible-NIR spectral ranges. SAC provides highresolution images over the wide geometric and spectral ranges: 10 m ground sample distance (GSD) and 50 km swath width in the spectral ranges of 520 ${\sim}$ 890 nm. SAC is designed to produce high quality images: modulation transfer function (MTF) of more than 15 %; signal-to-noise ratio (SNR) of more than 100. The missions of SAC incorporate various imaging operations: multi-spectral imaging; super swath-width imaging with cameras in parallel; along-track stereo imaging with slanted 2 cameras.

  • PDF

금속 표면 미세 결함에 대한 신뢰성 있는 실시간 3차원 형상 추출 시스템 개발 (Development of a Reliable Real-time 3D Reconstruction System for Tiny Defects on Steel Surfaces)

  • 장유진;이주섭
    • 제어로봇시스템학회논문지
    • /
    • 제19권12호
    • /
    • pp.1061-1066
    • /
    • 2013
  • In the steel industry, the detection of tiny defects including its 3D characteristics on steel surfaces is very important from the point of view of quality control. A multi-spectral photometric stereo method is an attractive scheme because the shape of the defect can be obtained based on the images which are acquired at the same time by using a multi-channel camera. Moreover, the calculation time required for this scheme can be greatly reduced for real-time application with the aid of a GPU (Graphic Processing Unit). Although a more reliable shape reconstruction of defects can be possible when the numbers of available images are increased, it is not an easy task to construct a camera system which has more than 3 channels in the visible light range. In this paper, a new 6-channel camera system, which can distinguish the vertical/horizontal linearly polarized lights of RGB light sources, was developed by adopting two 3-CCD cameras and two polarized lenses based on the fact that the polarized light is preserved on the steel surface. The photometric stereo scheme with 6 images was accelerated by using a GPU, and the performance of the proposed system was validated through experiments.

Atmospheric Correction Problems with Multi-Temporal High Spatial Resolution Images from Different Satellite Sensors

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • 대한원격탐사학회지
    • /
    • 제31권4호
    • /
    • pp.321-330
    • /
    • 2015
  • Atmospheric correction is an essential part in time-series analysis on biophysical parameters of surface features. In this study, we tried to examine possible problems in atmospheric correction of multitemporal High Spatial Resolution (HSR) images obtained from two different sensor systems. Three KOMPSAT-2 and two IKONOS-2 multispectral images were used. Three atmospheric correction methods were applied to derive surface reflectance: (1) Radiative Transfer (RT) - based absolute atmospheric correction method, (2) the Dark Object Subtraction (DOS) method, and (3) the Cosine Of the Uun zeniTh angle (COST) method. Atmospheric correction results were evaluated by comparing spectral reflectance values extracted from invariant targets and vegetation cover types. In overall, multi-temporal reflectance from five images obtained from January to December did not show consistent pattern in invariant targets and did not follow a typical profile of vegetation growth in forests and rice field. The multi-temporal reflectance values were different by sensor type and atmospheric correction methods. The inconsistent atmospheric correction results from these multi-temporal HSR images may be explained by several factors including unstable radiometric calibration coefficients for each sensor and wide range of sun and sensor geometry with the off-nadir viewing HSR images.

Test Application of KOMPSAT-2 to the Detection of Microphytobenthos in Tidal Flats

  • Won Joong-Sun;Lee Yoon-Kyung;Choi Jaewon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.249-252
    • /
    • 2005
  • Microphytobenthos bloom from late January to early March in Korean tidal flats. KOMPSAT-2 will provide multi-spectral images with a spatial resolution of 4 m comparable with IKONOS. Using IKONOS and Landsat data, algal mat detection was tested in the Saemangeum area~ Micro-benthic diatoms are abundant and a major primary product in the tidal flats. A linear spectral unmixing (LSU) method was applied to the test data. LSU was effective to detect algal mat and the classified algal mat fraction well correlated with NDVI image. Fine grained upper tidal flats are generally known to be the best environment for algal mat. Algal mat thriving in coarse grained lower tidal flats as well as upper tidal flats were reported in this study. A high resolution multi-spectral sensor in KOMPSAT-2 will provide useful data for long-term monitoring of microphytobenthos in tidal flats.

  • PDF

MODIS영상의 고해상도화 수법을 이용한 오창평야 NDVI의 평가 (Assessment of the Ochang Plain NDVI using Improved Resolution Method from MODIS Images)

  • 박종화;나상일
    • 한국환경복원기술학회지
    • /
    • 제9권6호
    • /
    • pp.1-12
    • /
    • 2006
  • Remote sensing cannot provide a direct measurement of vegetation index (VI) but it can provide a reasonably good estimate of vegetation index, defined as the ratio of satellite bands. The monitoring of vegetation in nearby urban regions is made difficult by the low spatial resolution and temporal resolution image captures. In this study, enhancing spatial resolution method is adapted as to improve a low spatial resolution. Recent studies have successfully estimated normalized difference vegetation index (NDVI) using improved resolution method such as from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard EOS Terra satellite. Image enhancing spatial resolution is an important tool in remote sensing, as many Earth observation satellites provide both high-resolution and low-resolution multi-spectral images. Examples of enhancement of a MODIS multi-spectral image and a MODIS NDVI image of Cheongju using a Landsat TM high-resolution multi-spectral image are presented. The results are compared with that of the IHS technique is presented for enhancing spatial resolution of multi-spectral bands using a higher resolution data set. To provide a continuous monitoring capability for NDVI, in situ measurements of NDVI from paddy field was carried out in 2004 for comparison with remotely sensed MODIS data. We compare and discuss NDVI estimates from MODIS sensors and in-situ spectroradiometer data over Ochang plain region. These results indicate that the MODIS NDVI is underestimated by approximately 50%.

Multi-temporal Analysis of High-resolution Satellite Images for Detecting and Monitoring Canopy Decline by Pine Pitch Canker

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • 대한원격탐사학회지
    • /
    • 제35권4호
    • /
    • pp.545-560
    • /
    • 2019
  • Unlike other critical forest diseases, pine pitch canker in Korea has shown rather mild symptoms of partial loss of crown foliage and leaf discoloration. This study used high-resolution satellite images to detect and monitor canopy decline by pine pitch canker. To enhance the subtle change of canopy reflectance in pitch canker damaged tree crowns, multi-temporal analysis was applied to two KOMPSAT multispectral images obtained in 2011 and 2015. To assure the spectral consistency between the two images, radiometric corrections of atmospheric and shadow effects were applied prior to multi-temporal analysis. The normalized difference vegetation index (NDVI) of each image and the NDVI difference (${\Delta}NDVI=NDVI_{2015}-NDVI_{2011}$) between two images were derived. All negative ΔNDVI values were initially considered any pine stands, including both pitch canker damaged trees and other trees, that showed the decrease of crown foliage from 2011 to 2015. Next, $NDVI_{2015}$ was used to exclude the canopy decline unrelated to the pitch canker damage. Field survey data were used to find the spectral characteristics of the damaged canopy and to evaluate the detection accuracy from further analysis.Although the detection accuracy as assessed by limited number of field survey on 21 sites was 71%, there were also many false alarms that were spectrally very similar to the damaged canopy. The false alarms were mostly found at the mixed stands of pine and young deciduous trees, which might invade these sites after the pine canopy had already opened by any crown damages. Using both ${\Delta}NDVI$ and $NDVI_{2015}$ could be an effective way to narrow down the potential area of the pitch canker damage in Korea.

위성영상과 GIS를 이용한 북한 서한만 지역의 간석지 분광특성 및 변화 탐지 (Analyzing the spectral characteristic and detecting the change of tidal flat area in Seo han Bay, North Korea using satellite images and GIS)

  • 조명희
    • 한국지리정보학회지
    • /
    • 제8권2호
    • /
    • pp.44-54
    • /
    • 2005
  • 본 연구에서는 다양한 위성영상자료(ASTER, KOMPSAT EOC, Landsat TM/ETM+)와 GIS 공간분석을 이용하여 비 접근 지역인 북한 서한만 일대의 간석지를 추출하였다. 특히 위성영상의 분광특성 분석을 통하여 미지형(micro-landform)을 분류하고 경년에 따른 간석지 면적의 변화를 비교 분석 하였다. 이를 위하여 우선 Landsat TM/ETM+의 multi 밴드를 이용하여 한반도에 분포하고 있는 8개의 간석지(서한만, 광량만, 해주만, 강화만, 아산만, 가로림만, 줄포만, 순천만)를 대상으로 분광특성을 분석하고 그 결과를 기반으로 ISODATA clustering 방법을 이용하여 북한 서한만 지역의 미지형 간석지의 미지형 특성을 추출하였다. 또한 경년에 따른 간석지 면적 변화를 알아보기 위하여 고지형도(1918-1920)를 디지털 자료로 변환하여 북한 서해안 전역의 간석지 GIS DB를 구축하였으며 최근의 시기별 다양한 위성영상 자료를 활용하여 작성된 간석지 분포도와 비교분석함으로서 비 접근 지역의 북한 서한만 일대 간석지 면적의 변화를 탐지 하였다. 아울러 간석지 미지형 분류와 경계구분에 효과적인 밴드를 제시하였으며 또한 위성영상자료 활용에 있어서 단일밴드인 우리나라 KOMPSAT EOC영상을 이용한 간석지 추출방법으로 high frequency pass filter method 통한 효율적인 간석지 분류 기법을 제시하였다.

  • PDF

고해상도 전정색 영상과 다중분광 영상을 활용한 그림자 분석기반의 3차원 건물 정보 추출 (Extraction of 3D Building Information by Modified Volumetric Shadow Analysis Using High Resolution Panchromatic and Multi-spectral Images)

  • 이태윤;김윤수;김태정
    • 대한원격탐사학회지
    • /
    • 제29권5호
    • /
    • pp.499-508
    • /
    • 2013
  • 각종 센서 정보에 기반한 3차원 건물 정보 추출 방법은 건물 형태를 보다 상세하게 묘사할 수 있지만 많은 비용 및 복잡한 처리가 요구된다. 단일 고해상도 영상에 기반한 방법은 추출할 수 있는 3차원 건물 정보가 비교적 제한적이지만 낮은 비용과 단순한 처리 과정으로 건물 정보를 추출할 수 있다는 장점을 갖는다. 단일 고해상도 위성영상만을 이용한 건물 정보 추출 방법 중에서도 Volumetric Shadow Analysis(VSA)는 그림자나 건물 밑 바닥이 일부분 가려져도 해당 건물의 높이와 바닥 위치 정보를 추출할 수 있다. 최근에는 반자동 VSA가 제안되었으나 이 방법은 주변 객체 형태와 그림자 영역 추출 정확도, 영상 노이즈 등에 큰 영향을 받는다. 반자동 VSA를 개선하기 위해서 본 논문은 단일 고해상도 전정색 영상과 다중분광 영상을 이용한 3차원 건물 정보 추출 방법을 제안한다. 제안된 방법은 각 밴드 영상에 반자동 VSA를 각각 적용하고 이를 통해서 계산된 파라미터로 비용함수를 구성한다. 비용함수로 계산된 값이 최대인 건물 높이를 실제 건물 높이로 결정한다. 제안된 방법의 성능평가를 위해서 Kompsat-2 영상이 사용되었으며 반자동 VSA와 제안된 방법으로 추출된 건물 정보를 비교 분석하였다. 그 결과는 제안된 방법이 보다 높은 성공률로 비교적 정확한 건물 정보를 추출할 수 있음을 보여준다.

국토모니터링을 위한 SPOT-5 위성영상 융합 (Resolution Merge of SPOT-5 Image for National Land Monitoring)

  • 박경식;최석근;이재기
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2007년도 춘계학술발표회 논문집
    • /
    • pp.141-144
    • /
    • 2007
  • Satellite image for national land monitoring is required high resolution and natural color with multi spectral band. the image is expensive as higher resolution. We need cheap image relatively in economic viewpoint but the image serves sufficient resolution to monitor national land. We merged two images to one image and evaluated the result. the two images which are used at the merge test are high resolution(2.5m per pixel) panchromatic and low resolution(10m per pixel) multi spectral image of SPOT-5 satellite. The result of this study. We made the merge image to have sufficient resolution for national monitoring.

  • PDF

고온 금속 표면 결함에 대한 3차원 형상 추출 시스템 개발 (Development of a 3D Shape Reconstruction System for Defects on a Hot Steel Surface)

  • 장유진;이주섭
    • 제어로봇시스템학회논문지
    • /
    • 제21권5호
    • /
    • pp.459-464
    • /
    • 2015
  • An on-line quality control of hot steel products is one of the important issues in the steel industry because of cost minimization. In recent years, relative depth information of surface defects is increasingly required for strict quality control. In this paper, a 3D shape reconstruction scheme for defects on a hot steel surface based on a multi-spectral photometric stereo method is proposed. After simultaneously illuminating a hot steel surface by using vertical/horizontal linearly polarized lights of green and blue light sources, the corresponding 4 images are obtained. The photometric stereo method is then applied with the aid of a GPU (Graphic Processing Unit) to reconstruct the shape of the target surface based on these images. The proposed scheme was validated through experiments.