• 제목/요약/키워드: multi-scale technique

검색결과 203건 처리시간 0.029초

여름강수량의 단기예측을 위한 Multi-Ensemble GCMs 기반 시공간적 Downscaling 기법 개발 (Development of Multi-Ensemble GCMs Based Spatio-Temporal Downscaling Scheme for Short-term Prediction)

  • 권현한;민영미
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1142-1146
    • /
    • 2009
  • A rainfall simulation and forecasting technique that can generate daily rainfall sequences conditional on multi-model ensemble GCMs is developed and applied to data in Korea for the major rainy season. The GCM forecasts are provided by APEC climate center. A Weather State Based Downscaling Model (WSDM) is used to map teleconnections from ocean-atmosphere data or key state variables from numerical integrations of Ocean-Atmosphere General Circulation Models to simulate daily sequences at multiple rain gauges. The method presented is general and is applied to the wet season which is JJA(June-July-August) data in Korea. The sequences of weather states identified by the EM algorithm are shown to correspond to dominant synoptic-scale features of rainfall generating mechanisms. Application of the methodology to seasonal rainfall forecasts using empirical teleconnections and GCM derived climate forecast are discussed.

  • PDF

Sparse and low-rank feature selection for multi-label learning

  • Lim, Hyunki
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권7호
    • /
    • pp.1-7
    • /
    • 2021
  • 본 논문에서는 다중 레이블 분류를 위한 특징 선별 기법을 제안한다. 기존 많은 특징 선별 기법들은 상호정보척도 등을 이용하여 특징과 레이블 사이의 연관성을 계산하여 특징을 선별하였다. 하지만 상호정보척도는 결합 확률을 요구하기 때문에 실제 전제 특징 집합에서 결합 확률을 계산하는 것은 어렵다. 따라서 소수의 특징만 계산이 가능하여 지역적 최적화만 가능하다는 단점을 가진다. 이런 지역적 최적화 문제를 피해, 주어진 특징 전체 공간에서 저랭크 공간을 구성하고, 희소성을 가진 특징들을 선별할 수 있는 특징 선별 기법을 제안한다. 이를 위해 뉴클리어 노름을 이용해 회귀 기반의 목적함수를 설계하였고, 이 목적 함수의 최적화 문제를 풀기 위한 경사하강법 방식의 알고리즘을 제안하였다. 4가지의 데이터와 3가지 다중 레이블 분류 성능을 기준으로 다중 레이블 분류 실험 결과를 통해 제안하는 방법론이 기존 특징 선별 기법보다 좋은 성능을 나타내는 것을 보였다. 또한 제안하는 목적함수의 파라미터 값 변화에도 성능 변화가 둔감한 것을 실험적인 결과로 확인하였다.

A Study on Improving License Plate Recognition Performance Using Super-Resolution Techniques

  • Kyeongseok JANG;Kwangchul SON
    • 한국인공지능학회지
    • /
    • 제12권3호
    • /
    • pp.1-7
    • /
    • 2024
  • In this paper, we propose an innovative super-resolution technique to address the issue of reduced accuracy in license plate recognition caused by low-resolution images. Conventional vehicle license plate recognition systems have relied on images obtained from fixed surveillance cameras for traffic detection to perform vehicle detection, tracking, and license plate recognition. However, during this process, image quality degradation occurred due to the physical distance between the camera and the vehicle, vehicle movement, and external environmental factors such as weather and lighting conditions. In particular, the acquisition of low-resolution images due to camera performance limitations has been a major cause of significantly reduced accuracy in license plate recognition. To solve this problem, we propose a Single Image Super-Resolution (SISR) model with a parallel structure that combines Multi-Scale and Attention Mechanism. This model is capable of effectively extracting features at various scales and focusing on important areas. Specifically, it generates feature maps of various sizes through a multi-branch structure and emphasizes the key features of license plates using an Attention Mechanism. Experimental results show that the proposed model demonstrates significantly improved recognition accuracy compared to existing vehicle license plate super-resolution methods using Bicubic Interpolation.

Review of Operational Multi-Scale Environment Model with Grid Adaptivity

  • Kang, Sung-Dae
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제10권S_1호
    • /
    • pp.23-28
    • /
    • 2001
  • A new numerical weather prediction and dispersion model, the Operational Multi-scale Environment model with Grid Adaptivity(OMEGA) including an embedded Atmospheric Dispersion Model(ADM), is introduced as a next generation atmospheric simulation system for real-time hazard predictions, such as severe weather or the transport of hazardous release. OMEGA is based on an unstructured grid that can facilitate a continuously varying horizontal grid resolution ranging from 100 km down to 1 km and a vertical resolution from 20 -30 meters in the boundary layer to 1 km in the free atmosphere. OMEGA is also naturally scale spanning and time. In particular, the unstructured grid cells in the horizontal dimension can increase the local resolution to better capture the topography or important physical features of the atmospheric circulation and cloud dynamics. This means the OMEGA can readily adapt its grid to a stationary surface, terrain features, or dynamic features in an evolving weather pattern. While adaptive numerical techniques have yet to be extensively applied in atmospheric models, the OMEGA model is the first to exploit the adaptive nature of an unstructured gridding technique for atmospheric simulation and real-time hazard prediction. The purpose of this paper is to provide a detailed description of the OMEGA model, the OMEGA system, and a detailed comparison of OMEGA forecast results with observed data.

  • PDF

박막태양전지의 광포획 기술 현황 (Current Status in Light Trapping Technique for Thin Film Silicon Solar Cells)

  • 박형식;신명훈;안시현;김선보;봉성재;;;이준신
    • Current Photovoltaic Research
    • /
    • 제2권3호
    • /
    • pp.95-102
    • /
    • 2014
  • Light trapping techniques can change the propagation direction of incident light and keep the light longer in the absorption layers of solar cells to enhance the power conversion efficiency. In thin film silicon (Si) solar cells, the thickness of absorption layer is generally not enough to absorb entire available photons because of short carrier life time, and light induced degradation effect, which can be compensated by the light trapping techniques. These techniques have been adopted as textured transparent conduction oxide (TCO) layers randomly or periodically textured, intermediate reflection layers of tandem and triple junction, and glass substrates etched by various patterning methods. We reviewed the light trapping techniques for thin film Si solar cells and mainly focused on the commercially available techniques applicable to textured TCO on patterned glass substrates. We described the characterization methods representing the light trapping effects, texturing of TCO and showed the results of multi-scale textured TCO on etched glass substrates. These methods can be used tandem and triple thin film Si solar cells to enhance photo-current and power conversion efficiency of long term stability.

수열에너지 입지 선정을 위한 계층화분석법의 적용 (Application of analytic hierarchy process technique for selecting a hydrothermal energy site)

  • 안주현;박수완;오창현
    • 상하수도학회지
    • /
    • 제38권2호
    • /
    • pp.69-81
    • /
    • 2024
  • In this study, an evaluation system that can be used to evaluate the feasibility of developing and supplying hydrothermal energy for the operation of large-scale complex facilities was developed. To this end, this study derived factors to be considered when selecting a location for the use of hydrothermal energy using raw water from multi-purpose dams and regional water supply systems through literature survey and expert interviews. The evaluation indicators derived from this study are divided into four sectors: hydrothermal energy utilization factors, location factors, planning factors, and disaster safety factors, and are composed of 10 mid-level indicators and 34 detailed planning indicators. The relative importance of all factors was derived using the Analytic Hierarchy Process (AHP) technique, and the developed evaluation indicators and relative importance were applied to four multi-purpose dam regions in the country. As a result, it was found that in the development and use of hydrothermal energy utilizing regional raw water supply line the urban planning conditions of the supply site can have a greater impact on the location selection results than the hydrothermal energy development itself. Due to the characteristics of the evaluation indicators developed in this study and their nature as comprehensive indicators, it is believed that the results should be applied to determine the overall adequacy of site selection in the early stages of hydrothermal energy development. In the future, it is believed that it will be necessary to analyze the problems in supplying and operating hydrothermal energy using raw water from multi-purpose dams and regional water resources. Based on the analysis the evaluation system developed in this study is expected to be improved and supplemented.

Buckling analysis of tapered BDFGM nano-beam under variable axial compression resting on elastic medium

  • Heydari, Abbas;Shariati, Mahdi
    • Structural Engineering and Mechanics
    • /
    • 제66권6호
    • /
    • pp.737-748
    • /
    • 2018
  • The current study presents a new technique in the framework of the nonlocal elasticity theory for a comprehensive buckling analysis of Euler-Bernoulli nano-beams made up of bidirectional functionally graded material (BDFGM). The mechanical properties are considered by exponential and arbitrary variations for axial and transverse directions, respectively. The various circumstances including tapering, resting on two-parameter elastic foundation, step-wise or continuous variations of axial loading, various shapes of sections with various distribution laws of mechanical properties and various boundary conditions like the multi-span beams are taken into account. As far as we know, for the first time in the current work, the buckling analyses of BDFGM nano-beams are carried out under mentioned circumstances. The critical buckling loads and mode shapes are calculated by using energy method and a new technique based on calculus of variations and collocation method. Fast convergence and excellent agreement with the known data in literature, wherever possible, presents the efficiency of proposed technique. The effects of boundary conditions, material and taper constants, foundation moduli, variable axial compression and small-scale of nano-beam on the buckling loads and mode shapes are investigated. Moreover the analytical solutions, for the simpler cases are provided in appendices.

3 차원 곡면 데이터 획득을 위한 멀티 레이져 비젼 시스템 개발 (Development of Multi-Laser Vision System For 3D Surface Scanning)

  • 이정환;권기연;이현철;도영칠;최두진;박진형;김대경;박영준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.768-772
    • /
    • 2008
  • Various scanning systems have been studied in many industrial areas to acquire a range data or to reconstruct an explicit 3D model. Currently optical technology has been used widely by virtue of noncontactness and high-accuracy. In this paper, we describe a 3D laser scanning system developped to reconstruct the 3D surface of a large-scale object such as a curved-plate of ship-hull. Our scanning system comprises of 4ch-parallel laser vision modules using a triangulation technique. For multi laser vision, calibration method based on least square technique is applied. In global scanning, an effective method without solving difficulty of matching problem among the scanning results of each camera is presented. Also minimal image processing algorithm and robot-based calibration technique are applied. A prototype had been implemented for testing.

  • PDF

다중 스케일 텍스처 합성 (Multi-scale Texture Synthesis)

  • 이성호;박한욱;이정;김창헌
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제14권2호
    • /
    • pp.19-25
    • /
    • 2008
  • 이 논문에서는 각기 다른 스케일에서 각각의 구조를 띤 텍스처를 합성하는 기법을 제안한다. 우리의 기법은 GPU로 실시간으로 수행되는 병렬 텍스처 합성 기법에 기반을 두었다. 새로 도입된 좌표 변환 연산자를 이용하면 이미 합성된 좌표 맵을 다른 스케일의 입력 텍스처로의 좌표 공간으로 변환할 수 있다. 이 연산자는 작은 룩업 테이블로 미리 연산될 수 있기 때문에 본 기법을 도입함으로써 생기는 오버헤드는 매우 적다. 우리의 업샘플 기법은 텍스처가 두드러전 이미지의 해상도를 높일 때 특히 유용하다. 그리고, 우리의 기법을 이용하여 저해상도 컨트롤 이미지를 이용한 텍스처 디자인도 가능하다. 이 디자인 툴은 지형을 특정한 스타일로 디자인하는 데에 유용하며 일반적인 높낮이 조절 브러시를 이용할 수 있으므로 직관적이다.

  • PDF

Photogrammetry 기법을 활용한 MSC 설치면의 정밀 측정

  • 우성현;김홍배;문상무;임종민
    • 항공우주기술
    • /
    • 제3권1호
    • /
    • pp.126-133
    • /
    • 2004
  • 사진측량법(Photogrammetry)는 서로 다른 촬영각을 가지는 다수의 2차원 이미지로부터 대상물의 정밀한 3차원 형상을 얻어내는 기법이다. 본 연구에서는 사진측량법을 활용하여 다목적 실용위성 2호 비행모델 하부 탑재체 플랫폼(Low Payload Platform)의 고해상도 카메라 접합면에 대한 편평도(Flatness) 측정 작업을 수행하였으며, 정밀하게 교정된 2개의 스케일바(Scale Bar)를 사용하여 절대적인 길이 값을 3차원 모델에 부과함과 동시에 측정정확도를 계산하여 내었다. 또한 측정된 편평도 결과는 고해상도 카메라 납품 업체에서 제시한 편평도 요구조건과 비교되었다.

  • PDF