• 제목/요약/키워드: multi-scale enhancement filter

검색결과 9건 처리시간 0.026초

영상의 화질 개선을 위한 Multi-Scale Retinex 기반의 적응적 언샤프 마스킹 필터 설계 (Adaptive Unsharp Masking Filter Design Based on Multi-Scale Retinex for Image Enhancement)

  • 김주영;김진헌
    • 한국멀티미디어학회논문지
    • /
    • 제21권2호
    • /
    • pp.108-116
    • /
    • 2018
  • In this paper, we propose an image enhancement method based on Multi-Scale Retinex theory that designs Unsharp Masking Filter (UMF) and emphasizes the contrast ratio adaptively. Unsharp Masking (UM) technique emphasizes image sharpness and improves contrast ratio by adding high frequency component to the original image. The high frequency component is obtained by differentiating between original image and low frequency image. In this paper, we present how to design an UMF kernel and to adaptively apply it to increase the contrast ratio according to multi-scale retinex theory which resembles human visual system. Experimental results show that the proposed method has better quantitative performance indexes such as PSNR, ambe & SSIM and better qualitative feature like halo artifact suppression.

선형 MSR을 이용한 역광 영상의 명암비 향상 알고리즘 (Contrast Enhancement Algorithm for Backlight Images using by Linear MSR)

  • 김범용;황보현;최명렬
    • 전기학회논문지P
    • /
    • 제62권2호
    • /
    • pp.90-94
    • /
    • 2013
  • In this paper, we propose a new algorithm to improve the contrast ratio, to preserve information of bright regions and to maintain the color of backlight image that appears with a great relative contrast. Backlight images of the natural environment have characteristics for difference of local brightness; the overall image contrast improvement is not easy. To improve the contrast of the backlight images, MSR (Multi-Scale Retinex) algorithm using the existing multi-scale Gaussian filter is applied. However, existing multi-scale Gaussian filter involves color distortion and information loss of bright regions due to excessive contrast enhancement and noise because of the brightness improvement of dark regions. Moreover, it also increases computational complexity due to the use of multi-scale Gaussian filter. In order to solve these problems, a linear MSR is performed that reduces the amount of computation from the HSV color space preventing the color distortion and information loss due to excessive contrast enhancement. It can also remove the noise of the dark regions which is occurred due to the improved contrast through edge preserving filter. Through experimental evaluation of the average color difference comparison of CIELAB color space and the visual assessment, we have confirmed excellent performance of the proposed algorithm compared to conventional MSR algorithm.

An automatic detection method for lung nodules based on multi-scale enhancement filters and 3D shape features

  • Hao, Rui;Qiang, Yan;Liao, Xiaolei;Yan, Xiaofei;Ji, Guohua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권1호
    • /
    • pp.347-370
    • /
    • 2019
  • In the computer-aided detection (CAD) system of pulmonary nodules, a high false positive rate is common because the density and the computed tomography (CT) values of the vessel and the nodule in the CT images are similar, which affects the detection accuracy of pulmonary nodules. In this paper, a method of automatic detection of pulmonary nodules based on multi-scale enhancement filters and 3D shape features is proposed. The method uses an iterative threshold and a region growing algorithm to segment lung parenchyma. Two types of multi-scale enhancement filters are constructed to enhance the images of nodules and blood vessels in 3D lung images, and most of the blood vessel images in the nodular images are removed to obtain a suspected nodule image. An 18 neighborhood region growing algorithm is then used to extract the lung nodules. A new pulmonary nodules feature descriptor is proposed, and the features of the suspected nodules are extracted. A support vector machine (SVM) classifier is used to classify the pulmonary nodules. The experimental results show that our method can effectively detect pulmonary nodules and reduce false positive rates, and the feature descriptor proposed in this paper is valid which can be used to distinguish between nodules and blood vessels.

A Comprehensive and Practical Image Enhancement Method

  • Wu, Fanglong;Liu, Cuiyin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권10호
    • /
    • pp.5112-5129
    • /
    • 2019
  • Image enhancement is a challenging problem in the field of image processing, especially low-light color images enhancement. This paper proposed a robust and comprehensive enhancement method based several points. First, the idea of bright channel is introduced to estimate the illumination map which is used to attain the enhancing result with Retinex model, and the color constancy is keep as well. Second, in order eliminate the illumination offsets wrongly estimated, morphological closing operation is used to modify the initial estimating illumination. Furthermore, in order to avoid fabricating edges, enlarged noises and over-smoothed visual features appearing in enhancing result, a multi-scale closing operation is used. At last, in order to avoiding the haloes and artifacts presented in enhancing result caused by gradient information lost in previous step, guided filtering is introduced to deal with previous result with guided image is initial bright channel. The proposed method can get good illumination map, and attain very effective enhancing results, including dark area is enhanced with more visual features, color natural and constancy, avoiding artifacts and over-enhanced, and eliminating Incorrect light offsets.

Adaptive Enhancement Method for Robot Sequence Motion Images

  • Yu Zhang;Guan Yang
    • Journal of Information Processing Systems
    • /
    • 제19권3호
    • /
    • pp.370-376
    • /
    • 2023
  • Aiming at the problems of low image enhancement accuracy, long enhancement time and poor image quality in the traditional robot sequence motion image enhancement methods, an adaptive enhancement method for robot sequence motion image is proposed. The feature representation of the image was obtained by Karhunen-Loeve (K-L) transformation, and the nonlinear relationship between the robot joint angle and the image feature was established. The trajectory planning was carried out in the robot joint space to generate the robot sequence motion image, and an adaptive homomorphic filter was constructed to process the noise of the robot sequence motion image. According to the noise processing results, the brightness of robot sequence motion image was enhanced by using the multi-scale Retinex algorithm. The simulation results showed that the proposed method had higher accuracy and consumed shorter time for enhancement of robot sequence motion images. The simulation results showed that the image enhancement accuracy of the proposed method could reach 100%. The proposed method has important research significance and economic value in intelligent monitoring, automatic driving, and military fields.

DOA 기반 학습률 조절을 이용한 다채널 음성개선 알고리즘 (Multi-Channel Speech Enhancement Algorithm Using DOA-based Learning Rate Control)

  • 김수환;이영재;김영일;정상배
    • 말소리와 음성과학
    • /
    • 제3권3호
    • /
    • pp.91-98
    • /
    • 2011
  • In this paper, a multi-channel speech enhancement method using the linearly constrained minimum variance (LCMV) algorithm and a variable learning rate control is proposed. To control the learning rate for adaptive filters of the LCMV algorithm, the direction of arrival (DOA) is measured for each short-time input signal and the likelihood function of the target speech presence is estimated to control the filter learning rate. Using the likelihood measure, the learning rate is increased during the pure noise interval and decreased during the target speech interval. To optimize the parameter of the mapping function between the likelihood value and the corresponding learning rate, an exhaustive search is performed using the Bark's scale distortion (BSD) as the performance index. Experimental results show that the proposed algorithm outperforms the conventional LCMV with fixed learning rate in the BSD by around 1.5 dB.

  • PDF

적응형 언샤프 마스킹을 위한 지역적 밝기 기반의 가중치 맵 생성 기법 (A Weight Map Based on the Local Brightness Method for Adaptive Unsharp Masking)

  • 황태훈;김진헌
    • 한국멀티미디어학회논문지
    • /
    • 제21권8호
    • /
    • pp.821-828
    • /
    • 2018
  • Image Enhancement is used in various applications. Among them, unsharp masking methods can improve the contrast with a simple operation. However, it has problems of noise enhancement and halo effect caused by the use of a single filter. To solve this problems, adaptive processing using multi-scale and bilinear filters is being studied. These methods are effective for improving the halo effect, but it require a lot of calculation time. In this paper, we want to simplify adaptive filtering by generating a weight map based on local brightness. This weight map enables adaptive processing that eliminates the halo effect through a single multiplication operation. Through experiments, we confirmed the suppression of the halo effect through the result image of the proposed algorithm and existing algorithm.

Image Enhancement Using Multi-scale Gradients of the Wavelet Transform

  • Okazaki, Hidetoshi;Nakashizuka, Makoto
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -1
    • /
    • pp.180-183
    • /
    • 2002
  • In this paper, we propose new unsharp masking technique based on the multiscale gradient planes. The unsharp masking technique is implemented as a high-pass filter and improves the sharpness of degraded images. However, the conventional unsharp masking enhances the noise component simultaneously. To reduce the noise influence, we introduce the edge information from the difference of the gradient values between two consecutive scales of the multiscale gradient. The multiscale gradient indicates the presence of image edges as the ratio between the gradients between two different scales by its multiscale nature. The noise reduction of the proposed method does not depend on the variance of images and noises. In experiment, we demonstrate enhancement results for blurred noisy images and compare with the conventional cubic unsharp masking technique.

  • PDF

빔포밍 및 DOA 기반의 마스킹을 이용한 2채널 잡음제거 (Two-Channel Noise Reduction Using Beamforming and DOA-Based Masking)

  • 김영일;정상배
    • 한국정보통신학회논문지
    • /
    • 제17권1호
    • /
    • pp.32-40
    • /
    • 2013
  • 본 논문에서는 빔포밍과 입사각분석 기반 마스킹을 이용한 다채널 음성개선 알고리즘이 제안된다. 제안된 알고리즘에서는 LCMV 빔포밍을 수행한 후에 입사각 분석을 이용한 멜-주파수 위너필터가 적용되어 잔존하는 잡음을 제거한다. 성능 향상을 위해서 빔포밍의 적응 필터 학습률과 목표 음성 스펙트럼 검출을 위한 입사각 임계치가 최적화된다. 성능 지수로서 PESQ와 출력 SNR이 측정되었으며 실험 결과 제안한 알고리즘이 종전의 최소분산 빔포밍 기법보다 PESQ 관점에서 0.09, 출력 SNR 관점에서 5.75 dB의 성능 향상시킴을 알 수 있었다.