• Title/Summary/Keyword: multi-rotor

Search Result 240, Processing Time 0.032 seconds

Numerical Analysis of Aerodynamic Performance for Tilt Rotor Aircraft in Cruise Mode Using Chimaera Grid Method (겹침격자 기법을 이용한 틸트로터의 순항모드에 대한 공력성능 수치해석)

  • Ko S. H.;Ahn S. W.;Kim B. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.87-90
    • /
    • 2004
  • A numerical analysis was made for the unsteady flow fields of rotor system of a Tilt-Rotor aircraft in cruise mode. The Reynolds-averaged thin-layer Navier-Stokes equations were discretized by Roe's upwind differencing scheme and integrated in time by the LU-SGS algorithm. The computational domain of the rotor system was constructed by six multi-block Chimera grids. Simulated unsteady flow fields of rotating blades were studied in several different view points.

  • PDF

Analysis of the Torque Characteristics and Loss Distribution of the Rotor Bar of an Inverter-fed Cage Induction Motor with Skewed Slots (사구슬롯이 있는 3상 농형 유도 전동기의 인버터 구동시 토오크 특성 및 회전자 바 동손분포 해석)

  • Kim, Byeong-Taek;Choe, Byeong-Il;Park, Seung-Chan;O, Gyeong-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.12
    • /
    • pp.797-806
    • /
    • 2000
  • In this paper, the torque characteristics and the bar loss distribution are analyzed when a general cage induction motor with skewed slots is fed by a 6-step inverter. For the electromagnetic analysis, time-stepping finite element method is used. And the multi-slice technique and sliding surface technique are respectively utilized to consider the skew effect and the rotation of the rotor. As a result, the effects of skewed rotor bar and the inverter output voltage on the characteristics of the torque and bar loss in the rotor are investigated. The simulation results are verified by measurement of flux density distribution axially in the stator teeth.

  • PDF

A Study of Shorted-Turn Detection in the Cylindrical Synchronous Generator Rotor Windings via Discrete Wavelet Transform (이산 웨이브렛 변환을 이용한 동기발전기 회전자 층간단락 진단에 관한 연구)

  • Kim, Y.J.;Kim, J.M.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.476-478
    • /
    • 2005
  • This paper describes a method for the detection of shorted-turn in the cylindrical synchronous generator rotor windings based on the discrete wavelet transform. Multi-resolution analysis(MRA) based on discrete wavelet transform provides a set of decomposed signals in independent frequency bands. In the proposed method, shorted-turn detection in rotor windings is based on the decomposition of the rotor currents, where wavelet coefficients of these signals have been extracted. Comparing these extracted coefficients is used for diagnosing the healthy machine from faulty machine. Experimental results show the effectiveness of the proposed method for shorted-turn detection in the cylindrical synchronous generator rotor windings.

  • PDF

Cross-sectional Design and Stiffness Measurements of Composite Rotor Blade for Multipurpose Unmanned Helicopter (다목적 무인헬기 복합재 로터 블레이드의 단면 구조설계 및 강성 측정)

  • Kee, Young-Jung;Kim, Deog-Kwan;Shin, Jin-Wook
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.52-59
    • /
    • 2019
  • The rotor blade is a key component that generates the lift, thrust, and control forces required for helicopter flight by the torque transmitted through the hub and the blade pitch angle control, and should be designed to factor vibration characteristics so that there is no risk of resonance with structural safety. In this study, the structural design of the main rotor blade for MPUH(Multi-Purpose Unmanned Helicopter) was conducted and the sectional stiffness measurement of the fabricated blade was performed. The evaluation of the vibration characteristics of the main rotor system was then conducted factoring the measured stiffness distribution. The interior of the rotor blade comprised of the skin, spar, and torsion box, and carbon and glass fiber composites were applied. The Ksec2D program was applied to predict the stiffness of blade, and the results were compared to the measured data. CAMRADII, a comprehensive rotorcraft analysis program, was applied to investigate the natural frequency trends and resonance risks due to the rotor rotation.

Interaction of Multi Current Power Generation Blade (멀티 해류발전 블래이드 간섭 연구)

  • Jo, Chul-Hee;Park, Kwan-Kyu;Cho, Won-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.47-54
    • /
    • 2006
  • The current power generation is very suitable renewable energy for the application to Korean western and south coastal regions where characterized as having high current speed. Being different from tidal power generation that needs tremendous dam structure to preserve water, the current power generation utilizes the ocean current flow without damaging to estuary area and its environment. There are still many areas to understand the characteristics of current power generation for the actual field installation. As designing muti module with several rotors, the interaction between rotors will occur that would affect the efficiency and RPM of each rotor. In this study, the interactions caused by gaps between rotors in multi module are studied.

Convective heat transfer on the rotor fan and endring of the TEFC induction motor with telemetry system (무선계측기를 이용한 회전자팬 및 엔드링에서의 대류 열전달)

  • Yun, Myeong-Geun;Ha, Gyeong-Pyo;Go, Sang-Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.510-519
    • /
    • 1998
  • Recently, computer modelling is increasingly used as a design tool, which requires more detailed data for heat transfer coefficients in various regions of the induction motor. But there are little information about those of rotor fan and endring because of difficulty in measuring signals in rotating bodies. In the present studies, the temperature signals were precisely measured with self-developed telemetry system, which had multi-channels and high rotational speed. After some losses were compensated, the heat transfer coefficients of the rotor endring and fan surfaces were measured. Minimum heat transfer region was existed with endcap plate distance and maximum heat transfer was found at some rotor fan width. It was also studied that how the guide plate and endcap inside rib effected on the rotor heat transfer. The higher heat transfer were obtained with decreasing guide plate distance, increasing the number and height of endcap inside rib. The correlation equations of the results were obtained and compared with others. Above results of the heat transfer coefficients can be used as basic data for cooling design of the various kind of motors.

An Improved Substructure Synthesis Method for Unbalance Response Analysis of Rotor Bearing Systems (회전체 베어링계의 불균형 응답 해석을 위한 개선된 부분 구조 합성법)

  • 홍성욱;박종혁
    • Journal of KSNVE
    • /
    • v.6 no.1
    • /
    • pp.71-82
    • /
    • 1996
  • The finite element analysis for rotor bearing systems has been an essential tool for design, identification, and diagnosis of rotating machinery. Among others, the unbalance response analysis is fundamental in the vibration analysis of rotor bearing systems because rotating unbalance is recognized as a common sourve of vibration in rotating machinery. However there still remains a problem in the aspect of computational efficiency for unbalance response analysis of large rotor bearing systems. Gyroscopic terms and local bearing parameters in rotor bearing systems often make matters worse in unbalance response computation due to the complicated dynamic properties such as rotational speed dependency and/or anisotropy. The present paper proposes an efficient method for unbalance responses of multi-span rotor bearing systems. An improved substructure synthesis scheme is introduced which makes it possible to compute unbalance responses of the system by coupling unbalance responses of substructures that are of self adjoint problem with small order matrices. The present paper also suggests a scheme to easily deal with gyroscopic tems and local, coupling or bearing parameters. The proposed method causes no errors even though the computational effort is reduced drastically. The present method is demonstrated through three test examples.

  • PDF

Performance Analysis and Pitch Control of Dual-Rotor Wind Turbine Generator System (Dual-Rotor 풍력 발전 시스템 성능 해석 및 피치 제어에 관한 연구)

  • Cho, Yun-Mo;No, Tae-Soo;Jung, Sung-Nam;Kim, Ji-Yon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.40-50
    • /
    • 2005
  • In this paper, preliminary results for performance prediction of a dual-rotor wind turbine generator system are presented. Blade element and momentum theories are used to model the aerodynamic forces and moments acting on the rotor blades, and multi-body dynamics approach is used to integrate the major components to represent the overall system. Not only the steady-state performance but the transient response characteristics are analyzed. Pitch control strategy to control the rotor speed and the generator output is proposed and its performance is verified through the nonlinear simulation.

Design and Analysis of Rolled Rotor Switched Reluctance Motor

  • Eyhab, El-Kharashi
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.472-481
    • /
    • 2006
  • In the conventional SRM with multi-rotor teeth, the air gap must be very small in order to drive the SRM in the saturation region that is necessary for high output torque. However, this leads to the problem of overheating; particularly in the case of a small-size SRM This paper discusses the design of a new type of SRM, namely the rolled rotor SRM. This new type does not require more than a single region of a very small airgap. This solves the overheating problem in the small size SRM. Moreover, the use of the rolled rotor, instead of the conventional toothed rotor, grades the airgap region in a fashion that gives a smooth variation in the reluctance and smooth shapes of both current and torque. The latter functional behavior is required in many applications such as servo applications. The paper first addresses general design steps of the rolled rotor SRM then proceeds to the simulation results of the new SRM in order to evaluate the advantages gained from the new design. In addition, this paper compares the torque ripples obtained from the new design to its equivalent conventional one.

Study on Performance Analyses on Coaxial Co-rotating Rotors of e-VTOL Aircraft for Urban Air Mobility (도심 항공 교통을 위한 전기동력 수직 이착륙기의 동축 동회전 로터의 성능해석 연구)

  • Lee, Yu-Been;Park, Jae-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.12
    • /
    • pp.1011-1018
    • /
    • 2021
  • This numerical study conducts the modeling and the hover performance analyses of coaxial co-rotating rotor(or stacked rotor), using a rotorcraft comprehensive analysis code, CAMRAD II. The important design parameters such as the index angle and axial spacing for the coaxial co-rotating rotor are varied in this simulation study. The coaxial co-rotating rotor is trimmed using the torque value of the upper rotor of the previous coaxial counter-rotating rotor or the total thrust value of the previous coaxial counter-rotating rotor in hover. The maximum increases in the rotor thrust is 1.84% for the index angle of -10° when using the torque trim approach. In addition, the maximum decreases in the rotor power is 4.53% for the index angle of 20° with the thrust trim method. Thus, the present study shows that the hover performance of the coaxial co-rotating rotor for e-VTOL aircraft can be changed by the index angle.