• Title/Summary/Keyword: multi-robot system

Search Result 462, Processing Time 0.033 seconds

A study on the implementation of new ROBOT CONTROLLER with MULTI-TASKING and MULTI-ROBOT functions (다중 processor를 이용한 multi-robot용 제어기의 구현에 대한 연구)

  • 김성락;추상원;이충기;임형준;이용중;이인옥
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.507-510
    • /
    • 1988
  • The main subject of this paper is the development of new ROBOT CONTROLLER, which can support MULTI-TASKING and MULTI-ROBOT functions. The system consists of various kinds of CPU modules according to their independent jobs. Acceleration and Deceleration profile is given in order to achieve the smooth robot motion and high cycle time. Further the communication capacity should be upgraded to meet the various kinds of peripheral PA devices.

  • PDF

Multi-agent System based on Blackboard System for Soccer Robot Implementation

  • Sanornoi, Nitiwat;Phurahong, Boonchana;Sooraksa, Pitikhate
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.2023-2028
    • /
    • 2004
  • This paper reveals the utilization of the multi-gent system that based on the Blackboard system basis as the controller of Soccer Robot. This system is a portion of developing the Soccer Robot team for Robocup 2004 Competition. In this development, the intelligent control system was initiated by the combination of parallel and distributed blackboard structures with the principle design that generated from human body structures, which consists of the combination of two main systems, the organs system and the brain system. The system is designed using the control system theory based on Blackboard basis. Modification of the initial structures to corroborate the Soccer Robot and the structure's constituents are clarified accordingly. To demonstrate the idea, ITE-old team is given as a case study.

  • PDF

Control Network Design for Multi Body Robot Based on IEEE1394 (IEEE1394를 이용한 다관절 로봇의 분산 제어 네트워크 개발)

  • Cho, Jung San;Sung, Young-Whee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.2 no.4
    • /
    • pp.221-226
    • /
    • 2007
  • This paper propose a control network system based on IEEE1394 for a multi body robot control. The IEEE1394 has the characteristic of high speed(400Mbps), real-time, stability and plug&play. And IEEE1394 also supports freeform daisy chaining, branching and hot plugging, which reduce cabling complexity and make a system simple. Especially, multi host and broad casting support network data sharing method which is suitable for control network for multi body robot. Through experiment, we show that the proposed control network can interface 48 joints (BLDC motors, gears, and encoders) and four 6-axis force/torque sensors with 4Khz communication bandwidth, which is adequate for a multi body robot.

  • PDF

Auto Sequencing User Interface for Mobile Robot Using Multi Sensor System (다중 센서 시스템을 이용한 이동로봇의 자동-절환 사용자 인터페이스)

  • Song, Tae-Houn;Park, Ji-Hwan;Park, Jong-Hyun;Jung, Soon-Mook;Hong, Soon-Hyuk;Kim, Gi-Oh;Jeon, Jae-Wook
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.319-325
    • /
    • 2008
  • In this paper, we develop the multi sensor system, to get the sufficient information of mobile robot's environment. Mobile robot user interface, based on multi sensor system, can choice a suitable sensor by low-cost multi sensors and then acquisition information from remote robot's workspace using auto sequencing user display function. This research of multi sensor system is consists of ultrasonic sensor, position sensing detector, and low-cost CMOS camera module.

  • PDF

A Vision System for ]Robot Soccer Game (로봇 축구 대회를 위한 영상 처리 시스템)

  • 고국원;최재호;김창효;김경훈;김주곤;이수호;조형석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.434-438
    • /
    • 1996
  • In this paper we present the multi-agent robot system and the vision system developed for participating in micro robot soccer tournament. The multi-agent robot system consists of micro robot, a vision system, a host computer and a communication module. Micro robot are equipped with two mini DC motors witf encoders and gearboxes, a R/F receiver, a CPU and infrared sensors for obstacle detection. A vision system is used to recognize the position of the ball and opponent robots, position and orientation of our robots. The vision system is composed of a color CCD camera and a vision processing unit(AISI vision computer). The vision algorithm is based on morphological method. And it takes about 90 msec to detect ball and 3-our robots and 3-opponent robots with reasonable accuracy

  • PDF

Simulation of Mobile Robot Navigation based on Multi-Sensor Data Fusion by Probabilistic Model

  • Jin, Tae-seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.4
    • /
    • pp.167-174
    • /
    • 2018
  • Presently, the exploration of an unknown environment is an important task for the development of mobile robots and mobile robots are navigated by means of a number of methods, using navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems, In mobile robotics, multi-sensor data fusion(MSDF) became useful method for navigation and collision avoiding. Moreover, their applicability for map building and navigation has exploited in recent years. In this paper, as the preliminary step for developing a multi-purpose autonomous carrier mobile robot to transport trolleys or heavy goods and serve as robotic nursing assistant in hospital wards. The aim of this paper is to present the use of multi-sensor data fusion such as ultrasonic sensor, IR sensor for mobile robot to navigate, and presents an experimental mobile robot designed to operate autonomously within indoor environments. Simulation results with a mobile robot will demonstrate the effectiveness of the discussed methods.

Centralized, Distributed, Hybrid Task Planning Framework for Multi-Robot System in Diverse Communication Status

  • Moon, Jiyoun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.3
    • /
    • pp.215-220
    • /
    • 2021
  • As the role of robots expands, flexible task planning methods are attracting attention from various domains. Many task planning frameworks are introduced to efficiently work in a wide range of areas. In order to work well in a broad region with multiple robots, various communication conditions should be controlled by task planning frameworks. However, few methods are proposed. In this paper, we propose mission planning methods according to the communication status of robots. The proposed method was verified through experiments assuming different communication states with a multi-robot system.

Modeling of a Timing-Belt Drive System Used in a Large-Scale Panel-Handling Robot (대형 패널 이송 로봇에 사용되는 타이밍벨트 구동계의 모델링)

  • Jo, Eunim;Rhim, Sungsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.915-921
    • /
    • 2013
  • Most of large scale solar panel handling robots adopt the timing-belt drive system for its driveline because of the simplicity and the easiness of implementation. The vibration caused by the flexure of the timing belt would increase as the size and the weight of the panel that the robot handles increase and the vibration would deteriorate the precision and/or productivity of the whole robot system. For the development of a proper control system and for the improvement of the design of the robot it is important to estimate the oscillatory response of the robot system including the flexible drive system properly. In this paper a flexible multi-body dynamics model of a large-scale solar-panel-handling robot with the flexible timing-belt drive system is developed using a generic multi-body dynamics analysis program, RecurDyn.

Implementing Dynamic Obstacle Avoidance of Autonomous Multi-Mobile Robot System (자율 다개체 모바일 로봇 시스템의 동적 장애물 회피 구현)

  • Kim, Dong W.;Yi, Cho-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • For an autonomous multi-mobile robot system, path planning and collision avoidance are important functions used to perform a given task collaboratively and cooperatively. This study considers these important and challenging problems. The proposed approach is based on a potential field method and fuzzy logic system. First, a global path planner selects the paths of the robots that minimize the cost function from each robot to its own target using a potential field. Then, a local path planner modifies the path and orientation from the global planner to avoid collisions with static and dynamic obstacles using a fuzzy logic system. In this paper, each robot independently selects its destination and considers other robots as dynamic obstacles, and there is no need to predict the motion of obstacles. This process continues until the corresponding target of each robot is found. To test this method, an autonomous multi-mobile robot simulator (AMMRS) is developed, and both simulation-based and experimental results are given. The results show that the path planning and collision avoidance strategies are effective and useful for multi-mobile robot systems.

A design of supervisory control system for a multi-robot system (다중로봇을 휘한 관리제어 시스템의 설계)

  • 서일홍;여희주;김재현;류종석;오상록
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.100-112
    • /
    • 1996
  • This paper presents a design experience of a control language for coordination of a multi-robot system. To effectively program job commands, a Petrinet-type Graphical Robot Language(PGRL) is proposed, where some functions, such as concurrency and synchronization, for coordination among tasks can be easily programmed.In our system, the proposed task commands of PGRL are implemented by employing formal model languages, which are composed of three modules, sensory, data handling, and action module. It is expected that by using our proposed PGRL and formal languages, one can easily describe a job or task, and hence can effectively operate a complex real-time and concurrent system. The control system is being implemented by using VME-based 32-bit microprocessor boards for supervisory, each module controller(arm, hand, leg, sensor data processing module) and a real time multi-tasking operating system(VxWorks). (author). 17 refs., 16 figs., 2 tabs.

  • PDF