• Title/Summary/Keyword: multi-quadratic mapping

Search Result 4, Processing Time 0.014 seconds

A COMPARISON OF RADIAL BASIS FUNCTIONS IN APPLICATIONS TO IMAGE MORPHING

  • Jin, Bo-Ram;Lee, Yong-Hae
    • The Pure and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.321-332
    • /
    • 2010
  • In this paper, we experiment image warping and morphing. In image warping, we use radial basis functions : Thin Plate Spline, Multi-quadratic and Gaussian. Then we obtain the fact that Thin Plate Spline interpolation of the displacement with reverse mapping is the efficient means of image warping. Reflecting the result of image warping, we generate two examples of image morphing.

ON THE SOLUTION OF A MULTI-VARIABLE BI-ADDITIVE FUNCTIONAL EQUATION I

  • Park, Won-Gil;Bae, Jae-Hyeong
    • The Pure and Applied Mathematics
    • /
    • v.13 no.4 s.34
    • /
    • pp.295-301
    • /
    • 2006
  • We Investigate the relation between the multi-variable bi-additive functional equation f(x+y+z,u+v+w)=f(x,u)+f(x,v)+f(x,w)+f(y,u)+f(y,v)+f(y,w)+f(z,u)+f(z,v)+f(z,w) and the multi-variable quadratic functional equation g(x+y+z)+g(x-y+z)+g(x+y-z)+g(-x+y+z)=4g(x)+4g(y)+4g(z). Furthermore, we find out the general solution of the above two functional equations.

  • PDF

SOLUTION OF A VECTOR VARIABLE BI-ADDITIVE FUNCTIONAL EQUATION

  • Park, Won-Gil;Bae, Jae-Hyeong
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.191-199
    • /
    • 2008
  • We investigate the relation between the vector variable bi-additive functional equation $f(\sum\limits^n_{i=1} xi,\;\sum\limits^n_{i=1} yj)={\sum\limits^n_{i=1}\sum\limits^n_ {j=1}f(x_i,y_j)$ and the multi-variable quadratic functional equation $$g(\sum\limits^n_{i=1}xi)\;+\;\sum\limits_{1{\leq}i<j{\leq}n}\;g(x_i-x_j)=n\sum\limits^n_{i=1}\;g(x_i)$$. Furthermore, we find out the general solution of the above two functional equations.