• 제목/요약/키워드: multi-phase models

검색결과 140건 처리시간 0.025초

다중상 흐름과 다종성분의 거동에 관한 수치적 모의와 문제점 (Numerical simulations and related problems in multiphase flow and multicomponent transport)

  • 이강근;이진용;천정용;유동렬;하규철;이철효
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 1998년도 공동 심포지엄 및 추계학술발표회
    • /
    • pp.27-31
    • /
    • 1998
  • Most models for the simulation of multi-phase flow and multi-species transport employ the capillary approach which uses the Darcy's law for the representation of mass flux of each phase. The capillary approach based on the Darcy's law require many empirical coefficients with complex functional dependencies rather than rigrous mathematical and physical formulation. The shortcoming of the capillary approach cause the numerical errors in the simulations by the multi-phase flow and transport models. This study discuss some of the problems related with the use of models.

  • PDF

ANALYSIS OF TWOPHASE FLOW MODEL EQUATIONS

  • Jin, Hyeonseong
    • 호남수학학술지
    • /
    • 제36권1호
    • /
    • pp.11-27
    • /
    • 2014
  • In this paper, we propose closures for multi-phase flow models, which satisfy boundary conditions and conservation constraints. The models governing the evolution of the fluid mixing are derived by applying an ensemble averaging procedure to the microphysical equations characterized by distinct phases. We consider compressible multi species multi-phase flow with surface tension and transport.

CFD Simulation of Multiphase Flow by Mud Agitator in Drilling Mud Mixing System

  • Kim, Tae-Young;Jeon, Gyu-Mok;Park, Jong-Chun
    • 한국해양공학회지
    • /
    • 제35권2호
    • /
    • pp.121-130
    • /
    • 2021
  • In this study, a computational fluid dynamics (CFD) simulation based on an Eulerian-Eulerian approach was used to evaluate the mixing performance of a mud agitator through the distribution of bulk particles. Firstly, the commercial CFD software Star-CCM+ was verified by performing numerical simulations of single-phase water mixing problems in an agitator with various turbulence models, and the simulation results were compared with an experiment. The standard model was selected as an appropriate turbulence model, and a grid convergence test was performed. Then, a simulation of the liquid-solid multi-phase mixing in an agitator was simulated with different multi-phase interaction models, and lift and drag models were selected. In the case of the lift model, the results were not significantly affected, but Syamlal and O'Brien's drag model showed more reasonable results with respect to the experiment. Finally, with the properly determined simulation conditions, a multi-phase flow simulation of a mud agitator was performed to predict the mixing time and spatial distribution of solid particles. The applicability of the CFD multi-phase simulation for the practical design of a mud agitator was confirmed.

Prediction of Maximum Liquid-phase Penetration in Diesel Spray: A review

  • No, Soo-Young
    • 한국분무공학회지
    • /
    • 제13권3호
    • /
    • pp.117-125
    • /
    • 2008
  • The correlations for the prediction of maximum liquid-phase penetration in diesel spray are reviewed in this study. The existing models developed for the prediction of maximum liquid-phase penetration can be categorized as the zero-dimensional (empirical) model, the multi-dimensional model and the other model. The existing zero-dimensional model can be classified into four groups and the existing multidimensional models can be classified into three groups. The other model includes holistic hydraulic and spray model. The maximum liquid-phase penetration is mainly affected by nozzle diameter, fuel volatility, injection pressure, ambient gas pressure, ambient gas density and fuel temperature. In the case of empirical correlations incorporated with spray angle, the predicted results will be different according to the selection of correlation for spray angle. The research for the effect of boiling point temperatures on maximum liquid-phase penetration is required. In the case of multidimensional model, there exist problems of the grid and spray sub-models dependency effects.

  • PDF

RC 축소모형의 유사동적실험을 위한 Equivalent Multi-Phase Similitude Law : 검증실험 (An Equivalent Multi-Phase Similitude Law for Pseudodynamic Test on Small-scale RC Models : Verification Tests)

  • 김남식;이지호;장승필
    • 한국지진공학회논문집
    • /
    • 제8권5호통권39호
    • /
    • pp.35-43
    • /
    • 2004
  • 대형 구조물의 지진응답을 실험적으로 연구할 경우, 실험장비의 용량과 실험모형의 크기 제약으로 인하여 축소모형이 일반적으로 적용되고 있다. 그러나 구조물의 지진응답은 비탄성 거동을 나타내기 때문에 거동예측이 복잡함에도 불구하고, 축소모형의 지진실험 결과로부터 원형구조물의 지진응답을 유추하기 위한 상사법칙의 연구는 미비한 실정이다. 철근콘크리트 구조물의 축소모형 제작 시 상사율이 커지면 상대적으로 부가질량이 증가하며, 또한 굵은 골재 크기의 영향으로 원형구조물과 축소모형의 제작에 동일한 재료를 사용하지 않는 것이 바람직하다. 따라서 동일한 재료를 사용하지 않을 경우, 상사법칙은 기하학적인 상사율과 재료적인 등가탄성계수비에 의존하게 된다. 본 연구에서는 원형구조물과 축소모형에 각각 적용되는 normal-concrete와 micro-concrete의 재료 비선형성을 파악하기 위해 압축강도시험을 수행하여, 재료의 거동구간을 극한 변형률을 기준으로 등가의 다단계로 나누어 등가탄성계수비를 적용시킴으로써 지진손상의 정도를 고려할 수 있는 equivalent multi-phase similitude law를 유도하였다. 유도된 상사법칙을 고려한 유사동적실험 알고리즘을 구성하였으며, 실험적인 검증을 위하여 철근콘크리트 column에 대하여 원형구조물과 1/5축소모형을 재료시험에서 정의한 등가탄성계수비를 고려하여 설계, 제작하였다. 검증실험에서는 constant modulus ratio와 variable modulus ratio를 적용하여 준정적실험과 유사동적실험을 수행한 결과, equivalent multi-phase similitude law를 고려한 유사동적실험 알고리즘에 의한 축소모형의 응답결과가 원형구조물의 거동을 비교적 정확히 재현함을 확인하였다.

STATUS AND PERSPECTIVE OF TWO-PHASE FLOW MODELLING IN THE NEPTUNE MULTISCALE THERMAL-HYDRAULIC PLATFORM FOR NUCLEAR REACTOR SIMULATION

  • BESTION DOMINIQUE;GUELFI ANTOINE;DEN/EER/SSTH CEA-GRENOBLE,
    • Nuclear Engineering and Technology
    • /
    • 제37권6호
    • /
    • pp.511-524
    • /
    • 2005
  • Thermalhydraulic reactor simulation of tomorrow will require a new generation of codes combining at least three scales, the CFD scale in open medium, the component scale and the system scale. DNS will be used as a support for modelling more macroscopic models. NEPTUNE is such a new generation multi-scale platform developed jointly by CEA-DEN and EDF-R&D and also supported by IRSN and FRAMATOME-ANP. The major steps towards the next generation lie in new physical models and improved numerical methods. This paper presents the advances obtained so far in physical modelling for each scale. Macroscopic models of system and component scales include multi-field modelling, transport of interfacial area, and turbulence modelling. Two-phase CFD or CMFD was first applied to boiling bubbly flow for departure from nucleate boiling investigations and to stratified flow for pressurised thermal shock investigations. The main challenges of the project are presented, some selected results are shown for each scale, and the perspectives for future are also drawn. Direct Numerical Simulation tools with Interface Tracking Techniques are also developed for even smaller scale investigations leading to a better understanding of basic physical processes and allowing the development of closure relations for macroscopic and CFD models.

MULTI-SCALE THERMAL-HYDRAULIC ANALYSIS OF PWRS USING THE CUPID CODE

  • Yoon, Han Young;Cho, Hyoung Kyu;Lee, Jae Ryong;Park, Ik Kyu;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • 제44권8호
    • /
    • pp.831-846
    • /
    • 2012
  • KAERI has developed a two-phase CFD code, CUPID, for a refined calculation of transient two-phase flows related to nuclear reactor thermal hydraulics, and its numerical models have been verified in previous studies. In this paper, the CUPID code is validated against experiments on the downcomer boiling and moderator flow in a Calandria vessel. Physical models relevant to the validation are discussed. Thereafter, multi-scale thermal hydraulic analyses using the CUPID code are introduced. At first, a component-scale calculation for the passive condensate cooling tank (PCCT) of the PASCAL experiment is linked to the CFD-scale calculation for local boiling heat transfer outside the heat exchanger tube. Next, the Rossendorf coolant mixing (ROCOM) test is analyzed by using the CUPID code, which is implicitly coupled with a system-scale code, MARS.

협동적 의사결정을 위한 다단계 모형 통합 (A Multilevel Model Integration for Collaborative Decision Making)

  • 권오병;이건창
    • 한국경영과학회지
    • /
    • 제23권2호
    • /
    • pp.103-129
    • /
    • 1998
  • Corporate level decision making with multiple decision makers in a consistent way is essential in Decision Support System. However, since the decision makers have different interests and knowledge, the models used by them are also different in their level of abstraction. This makes decision makers waste a lot of efforts for an integrated decision making. The purpose of this paper is to propose an integration mechanism so that collaborative decision making models may be used synthetically in multi-abstraction level. Models are classified as multimedia model, mathematical model, qualitative model, causal & directional model, causal model, directional model and relationship model according to the level of abstraction. The proposed integration mechanism consists of model interpretation phase. model transformation phase, and model integration phase. Specifically, the model transformation Phase is divided into (1) model tightening mode which gather information to make a model transformed into upper level model, and (2) model relaxing mode which makes lower level model. In the model integration phase, models of same level are to be integrated schematically. An illustrative M&A-decision example is given to show the possibility of the methodology.

  • PDF

3상 거동 상대투수율 선정에 따른 불포화대 및 포화대 내 NAPL 거동 특성 연구 (NAPL Fate and Transport in the Saturated and Unsaturated Zones Dependent on Three-phase Relative Permeability Model)

  • 김태훈;한원식;전현정;양우종;윤원우
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권spc호
    • /
    • pp.75-91
    • /
    • 2022
  • Differences in subsurface migration of LNAPL/DNAPL contaminants caused by a selection of 3-phase (aqueous, NAPL, and gas) relative permeability function (RPF) models in numerical modeling were investigated. Several types of RPF models developed from both experimental and theoretical backgrounds were introduced prior to conducting numerical modeling. Among the RPF models, two representative models (Stone I and Parker model) were employed to simulate subsurface LNAPLs/DNAPLs migration through numerical calculation. For each model, the spatiotemporal distribution of individual phases and the mole fractions of 6 NAPL components (4 LNAPL and 2 DNAPL components) were calculated through a multi-phase and multi-component numerical simulator. The simulation results indicated that both spilled LNAPLs and DNAPLs in the unsaturated zone migrated faster and reached the groundwater table sooner for Stone I model than Parker model while LNAPLs migrated faster on the groundwater table under Parker model. This results signified the crucial effect of 3-phase relative permeability on the prediction of NAPL contamination and suggested that RPF models should be carefully selected based on adequate verification processes for proper implementation of numerical models.

Topology optimization of variable thickness Reissner-Mindlin plate using multiple in-plane bi-directional functionally graded materials

  • Nam G. Luu;Thanh T. Banh;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • 제48권5호
    • /
    • pp.583-597
    • /
    • 2023
  • This paper introduces a novel approach to multi-material topology optimization (MTO) targeting in-plane bi-directional functionally graded (IBFG) non-uniform thickness Reissner-Mindlin plates, employing an alternative active phase approach. The mathematical formulation integrates a first shear deformation theory (FSDT) to address compliance minimization as the objective function. Through an alternating active-phase algorithm in conjunction with the block Gauss-Seidel method, the study transforms a multi-phase topology optimization challenge with multi-volume fraction constraints into multiple binary phase sub-problems, each with a single volume fraction constraint. The investigation focuses on IBFG materials that incorporate adequate local bulk and shear moduli to enhance the precision of material interactions. Furthermore, the well-established mixed interpolation of tensorial components 4-node elements (MITC4) is harnessed to tackle shear-locking issues inherent in thin plate models. The study meticulously presents detailed mathematical formulations for IBFG plates in the MTO framework, underscored by numerous numerical examples demonstrating the method's efficiency and reliability.