He, Ting;Meng, Ke;Dong, Zhao-Yang;Oh, Yong-Taek;Xu, Yan
Journal of Electrical Engineering and Technology
/
제5권3호
/
pp.363-370
/
2010
Load forecasting has always been essential to the operation and planning of power systems in deregulated electricity markets. Various methods have been proposed for load forecasting, and the neural network is one of the most widely accepted and used techniques. However, to obtain more accurate results, more information is needed as input variables, resulting in huge computational costs in the learning process. In this paper, to reduce training time in multi-layer perceptron-based short-term load forecasting, a graphics processing unit (GPU)-based computing method is introduced. The proposed approach is tested using the Korea electricity market historical demand data set. Results show that GPU-based computing greatly reduces computational costs.
Convolutional neural network (CNN) consists of a few pairs of both convolution layer and subsampling layer. Thus it has more hidden layers than multi-layer perceptron. With the increased layers, the size of convolution mask ultimately determines the total number of weights in CNN because the mask is shared among input images. It also is an important learning factor which makes or breaks CNN's learning. Therefore, this paper proposes the best method to choose the convolution size and the number of layers for learning CNN successfully. Through our face recognition with vast learning examples, we found that the best size of convolution mask is 5 by 5 and 7 by 7, regardless of the number of layers. In addition, the CNN with two pairs of both convolution and subsampling layer is found to make the best performance as if the multi-layer perceptron having two hidden layers does.
The current-voltage modeling plays an important role in characterizing photovoltaic systems. A solar cell has a nonlinear characteristic with various parameters influenced by the external environments such as the irradiance and the temperature. In order to accurately predict current-voltage characteristics at low irradiance, the artificial neural networks are applied to effectively quantify nonlinear behaviors. In this paper, a multi-layer perceptron scheme that can make accurate predictions is employed to learn complex formulas for large amounts of continuous data. The simulated results of artificial neural networks model show the accuracy improvement by using MATLAB/Simulink.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권11호
/
pp.3658-3679
/
2022
Classification of persons wearing and not wearing face masks in images has emerged as a new computer vision problem during the COVID-19 pandemic. In order to address this problem and scale up the research in this domain, in this paper a hybrid technique by employing ResNet-101 and multi-layer perceptron (MLP) classifier has been proposed. The proposed technique is tested and validated on a self-created face masks classification dataset and a standard dataset. On self-created dataset, the proposed technique achieved a classification accuracy of 97.3%. To embrace the proposed technique, six other state-of-the-art CNN feature extractors with six other classical machine learning classifiers have been tested and compared with the proposed technique. The proposed technique achieved better classification accuracy and 1-6% higher precision, recall, and F1 score as compared to other tested deep feature extractors and machine learning classifiers.
투자 분배 시스템은 지속성, 수익성, 변동성, 하방경직성 등 각각의 지표를 찾아내는 데이터 분석을 조합한 시스템으로 MLP 신경망을 통한 시황을 예측으로 투자 경험이 부족한 일반 사용자에게 안정적인 투자 분배 전략을 제공한다. 투자분배 시스템 구현을 위하여 추가적으로 금융시장에 대한 회귀분석, 켈리 공식과 같은 도구를 활용하였다.
의약품을 자동 포장하는 시스템에서는 캐니스터(Canister)에 해당 약을 정확히 보충할 수 있는 해당 약통과 캐니스터와의 일치 여부를 판단하는 정합 알고리즘이 필수적이다. 본 논문에서는 약화사고 방지를 위해 많은 종류의 약통을 분류하기 위한 분류 성능뿐만 아니라 실시간으로 처리할 수 있는 상 하 계층으로 구성된 계층적 신경회로망을 제안한다. 먼저 약통 정보를 나타내는 라벨 영상으로부터 다수의 저 차원 특징 벡터를 추출한다. 추출된 특징 벡터를 사용하여 하위계층의 다층 퍼셉트론(MLP, Multi-layer Perceptron) 신경회로망을 학습한다. 다음으로 학습된 MLP의 중간층 출력을 입력으로 사용하여 상위계층의 MLP를 학습한다. 100개의 약통에 대해 좌우 30도까지 회전한 영상에 대해 제안한 계층적 신경회로망의 분류 성능 시험과 실시간 연산처리 성능의 우수함을 보였다.
이 논문은 오차역전달(error back-propagation) 알고리듬을 갖는 다층구조 퍼셉트런(Multi-Layered Perceptron)을 사용하여 우리말 단어음성을 화자종속으로 기계 인식하는 실험에 관한 연구 결과다. 대상단어는 시외 자동전화 지역번호표에서 임의로 선택한 50개 지역명이며, 이 중 43개는 2음절로 구성되어있고 나머지 7개는 3음절이다. 단어를 음소나 음절별로 분리(segmentation)하지 않고, 단어의 각 부분에서 골고루 추출된 특징성분을 신경망에 입력하는 방법을 사용했다. 그렇게 함으로써 발음지속시간에 관계없는 결과를 얻을 수 있으며, 이 때 사용된 특징 성분은 선형예측분석으로 구해진 PARCOR계수다. 전체학습과 구분학습의 비교, 프레임 갯수와 PARCOR차수에 대한 인식률의 의존도, 중간층 뉴런의 갯수에 대한 인식률의 변동, 그리고 출력층 뉴런의 구성 방법에 따른 비교 등 4가지 실험을 통하여 가장 최량의 조건을 찾아보고자 하였다. 이 연구를 발전시킨다면 실시간의 화자독립 소규모어휘 음성인식이 가능해질 것으로 보인다.
선박의 접안운동을 자동화하기 위하여 인공신경망(Artificial Neural Network, 이하 ANN)에 의한 제어를 수행하였다. ANN은 시스템의 비선형성이 표현 가능하므로 접안운동과 같은 비선형성이 강한 조종운동에 적합하다. 입력층과 출력층 사이에 하나 이상의 중간층이 존재하는 다층 인식자(Multi-layer perceptron)를 사용하였고, 교사 데이터(Teaching data)와 역전파(Back-Propagation) 알고리즘을 사용하여 신경망의 출력값과 목표 출력값 사이의 오차가 최소가 되도록 신경망 학습을 수행하였다. 접안 시 저속조종 수학모델을 사용하여 접안 시뮬레이션을 수행하였으며, ANN의 입력층 성분(unit)이 8개인 구조와 6개인 구조의 접안 제어를 비교하였다. 시뮬레이션 결과, 두 ANN에 의하여 접안 경로 선택에 차이가 나타났으나 접안 조건은 모두 만족하였다.
적외선영상에서 표적을 효율적으로 탐지하는 새로운 자동표적탐지 알고리즘을 제안한다. 이 연구의 목적은 실제 야지환경에서 획득된 적외선영상에서 낮은 오경보 확률로 표적의 위치를 정확히 찾는 것이다. 제안한 방법이 기존의 방법과 다른 점은 초기 탐지단계에서 사용되는 모폴로지 필터링 기법을 밝기정보를 갖고 있는 원래 입력 영상이 아닌 가버(Gabor) 응답 영상에 적용한 것과 표적과 클러터를 구분하기 위해 표적의 정확한 윤곽선 추출을 필요로 하지않는 것이다. 제안한 방법은 크게 3단계로 구성된다. 첫째로, 영상에서 돌출된 영역을 찾기 위해 입력영상으로부터 4 방향의 가버 응답을 구하고 픽셀별로 가버응답 합 영상을 구한다. 이 영상에 모폴로지 기법을 적용하여 돌출된 영역의 위치를 찾는다. 둘째로, 원래의 입력영상의 돌출된 영역에서 지역적인 질감특징 정보들을 찾는다. 마지막 단계로, 찾아진 지역적 특징 정보들이 신경회로망인 다층퍼셉트론 (Multi-Layer Perceptron)으로 입력되어 학습된 훈련 데이터들과의 비교를 통해 실제 표적과 클러터를 구분한다. 실험에서는 제안한 방법을 군사용 적외선 영상장비를 사용하여 실제 야지 환경에 획득된 영상에 적용하여 우수성과 실용가능성을 확인한다.
최근 IoT환경에서 다양한 위치기반의 서비스의 확산으로 인해 실내측위는 중요한 영역으로 자리잡고 있다. 이에 본 논문에서는 특정 공간에 시설물, 서비스 등을 고려한 가상의 영역을 Zone으로 설정하였고, 다층퍼셉트론(MLP: Multi-Layer Perceptron)을 사용하여 Zone을 인식하는 방법을 제안하였다. 제안방법의 다층퍼셉트론은 입력으로 BLE(Bluetooth Low Energy) Beacon의 RSSI(Received Signal Strength Indicator)신호를 입력으로 활용하였고 현재 위치의 소속된 Zone을 출력하였다. 제안방법의 검증을 위해서 실제 역사와 유사한 크기의 실험환경을 구축하였으며 4개의 Beacon을 설치하였고 2개의 Zone영역을 설정하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.