• 제목/요약/키워드: multi-perceptron

검색결과 474건 처리시간 0.027초

Use of High-performance Graphics Processing Units for Power System Demand Forecasting

  • He, Ting;Meng, Ke;Dong, Zhao-Yang;Oh, Yong-Taek;Xu, Yan
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권3호
    • /
    • pp.363-370
    • /
    • 2010
  • Load forecasting has always been essential to the operation and planning of power systems in deregulated electricity markets. Various methods have been proposed for load forecasting, and the neural network is one of the most widely accepted and used techniques. However, to obtain more accurate results, more information is needed as input variables, resulting in huge computational costs in the learning process. In this paper, to reduce training time in multi-layer perceptron-based short-term load forecasting, a graphics processing unit (GPU)-based computing method is introduced. The proposed approach is tested using the Korea electricity market historical demand data set. Results show that GPU-based computing greatly reduces computational costs.

New Approach to Optimize the Size of Convolution Mask in Convolutional Neural Networks

  • Kwak, Young-Tae
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권1호
    • /
    • pp.1-8
    • /
    • 2016
  • Convolutional neural network (CNN) consists of a few pairs of both convolution layer and subsampling layer. Thus it has more hidden layers than multi-layer perceptron. With the increased layers, the size of convolution mask ultimately determines the total number of weights in CNN because the mask is shared among input images. It also is an important learning factor which makes or breaks CNN's learning. Therefore, this paper proposes the best method to choose the convolution size and the number of layers for learning CNN successfully. Through our face recognition with vast learning examples, we found that the best size of convolution mask is 5 by 5 and 7 by 7, regardless of the number of layers. In addition, the CNN with two pairs of both convolution and subsampling layer is found to make the best performance as if the multi-layer perceptron having two hidden layers does.

태양광 시스템의 인공신경망 기반 I-V 특성 모델링 향상 (Improved Modeling of I-V Characteristic Based on Artificial Neural Network in Photovoltaic Systems)

  • 박지원;이종환
    • 반도체디스플레이기술학회지
    • /
    • 제21권3호
    • /
    • pp.135-139
    • /
    • 2022
  • The current-voltage modeling plays an important role in characterizing photovoltaic systems. A solar cell has a nonlinear characteristic with various parameters influenced by the external environments such as the irradiance and the temperature. In order to accurately predict current-voltage characteristics at low irradiance, the artificial neural networks are applied to effectively quantify nonlinear behaviors. In this paper, a multi-layer perceptron scheme that can make accurate predictions is employed to learn complex formulas for large amounts of continuous data. The simulated results of artificial neural networks model show the accuracy improvement by using MATLAB/Simulink.

Scaling Up Face Masks Classification Using a Deep Neural Network and Classical Method Inspired Hybrid Technique

  • Kumar, Akhil;Kalia, Arvind;Verma, Kinshuk;Sharma, Akashdeep;Kaushal, Manisha;Kalia, Aayushi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권11호
    • /
    • pp.3658-3679
    • /
    • 2022
  • Classification of persons wearing and not wearing face masks in images has emerged as a new computer vision problem during the COVID-19 pandemic. In order to address this problem and scale up the research in this domain, in this paper a hybrid technique by employing ResNet-101 and multi-layer perceptron (MLP) classifier has been proposed. The proposed technique is tested and validated on a self-created face masks classification dataset and a standard dataset. On self-created dataset, the proposed technique achieved a classification accuracy of 97.3%. To embrace the proposed technique, six other state-of-the-art CNN feature extractors with six other classical machine learning classifiers have been tested and compared with the proposed technique. The proposed technique achieved better classification accuracy and 1-6% higher precision, recall, and F1 score as compared to other tested deep feature extractors and machine learning classifiers.

MLP(Multi-Layer Perceptron) 신경망을 활용한 투자 자산분배 시스템 개발 (Development of Investment Distribution System Using MLP(Multi-Layer Perceptron) Neural Network)

  • 박병훈;안민주;양다은;최다연;김정민
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.746-748
    • /
    • 2022
  • 투자 분배 시스템은 지속성, 수익성, 변동성, 하방경직성 등 각각의 지표를 찾아내는 데이터 분석을 조합한 시스템으로 MLP 신경망을 통한 시황을 예측으로 투자 경험이 부족한 일반 사용자에게 안정적인 투자 분배 전략을 제공한다. 투자분배 시스템 구현을 위하여 추가적으로 금융시장에 대한 회귀분석, 켈리 공식과 같은 도구를 활용하였다.

실시간 약통 분류를 위한 계층적 신경회로망 (Hierarchical Neural Network for Real-time Medicine-bottle Classification)

  • 김정준;김태훈;류강수;이대식;이종학;박길흠
    • 한국지능시스템학회논문지
    • /
    • 제23권3호
    • /
    • pp.226-231
    • /
    • 2013
  • 의약품을 자동 포장하는 시스템에서는 캐니스터(Canister)에 해당 약을 정확히 보충할 수 있는 해당 약통과 캐니스터와의 일치 여부를 판단하는 정합 알고리즘이 필수적이다. 본 논문에서는 약화사고 방지를 위해 많은 종류의 약통을 분류하기 위한 분류 성능뿐만 아니라 실시간으로 처리할 수 있는 상 하 계층으로 구성된 계층적 신경회로망을 제안한다. 먼저 약통 정보를 나타내는 라벨 영상으로부터 다수의 저 차원 특징 벡터를 추출한다. 추출된 특징 벡터를 사용하여 하위계층의 다층 퍼셉트론(MLP, Multi-layer Perceptron) 신경회로망을 학습한다. 다음으로 학습된 MLP의 중간층 출력을 입력으로 사용하여 상위계층의 MLP를 학습한다. 100개의 약통에 대해 좌우 30도까지 회전한 영상에 대해 제안한 계층적 신경회로망의 분류 성능 시험과 실시간 연산처리 성능의 우수함을 보였다.

오차 역전파 알고리즘을 갖는 MLP를 이용한 한국 지명 인식에 대한 연구 (A Study on the Spoken Korean Citynames Using Multi-Layered Perceptron of Back-Propagation Algorithm)

  • 송도선;이재건;김석동;이행세
    • 한국음향학회지
    • /
    • 제13권6호
    • /
    • pp.5-14
    • /
    • 1994
  • 이 논문은 오차역전달(error back-propagation) 알고리듬을 갖는 다층구조 퍼셉트런(Multi-Layered Perceptron)을 사용하여 우리말 단어음성을 화자종속으로 기계 인식하는 실험에 관한 연구 결과다. 대상단어는 시외 자동전화 지역번호표에서 임의로 선택한 50개 지역명이며, 이 중 43개는 2음절로 구성되어있고 나머지 7개는 3음절이다. 단어를 음소나 음절별로 분리(segmentation)하지 않고, 단어의 각 부분에서 골고루 추출된 특징성분을 신경망에 입력하는 방법을 사용했다. 그렇게 함으로써 발음지속시간에 관계없는 결과를 얻을 수 있으며, 이 때 사용된 특징 성분은 선형예측분석으로 구해진 PARCOR계수다. 전체학습과 구분학습의 비교, 프레임 갯수와 PARCOR차수에 대한 인식률의 의존도, 중간층 뉴런의 갯수에 대한 인식률의 변동, 그리고 출력층 뉴런의 구성 방법에 따른 비교 등 4가지 실험을 통하여 가장 최량의 조건을 찾아보고자 하였다. 이 연구를 발전시킨다면 실시간의 화자독립 소규모어휘 음성인식이 가능해질 것으로 보인다.

  • PDF

인공신경망을 이용한 선박의 자동접안 제어에 관한 연구 (A Study of the Automatic Berthing System of a Ship Using Artificial Neural Network)

  • 배철한;이승건;이상의;김주한
    • 한국항해항만학회지
    • /
    • 제32권8호
    • /
    • pp.589-596
    • /
    • 2008
  • 선박의 접안운동을 자동화하기 위하여 인공신경망(Artificial Neural Network, 이하 ANN)에 의한 제어를 수행하였다. ANN은 시스템의 비선형성이 표현 가능하므로 접안운동과 같은 비선형성이 강한 조종운동에 적합하다. 입력층과 출력층 사이에 하나 이상의 중간층이 존재하는 다층 인식자(Multi-layer perceptron)를 사용하였고, 교사 데이터(Teaching data)와 역전파(Back-Propagation) 알고리즘을 사용하여 신경망의 출력값과 목표 출력값 사이의 오차가 최소가 되도록 신경망 학습을 수행하였다. 접안 시 저속조종 수학모델을 사용하여 접안 시뮬레이션을 수행하였으며, ANN의 입력층 성분(unit)이 8개인 구조와 6개인 구조의 접안 제어를 비교하였다. 시뮬레이션 결과, 두 ANN에 의하여 접안 경로 선택에 차이가 나타났으나 접안 조건은 모두 만족하였다.

적외선영상에서 질감 특징과 신경회로망을 이용한 표적탐지 (Target Detection Using Texture Features and Neural Network in Infrared Images)

  • 선선구
    • 전자공학회논문지SC
    • /
    • 제47권5호
    • /
    • pp.62-68
    • /
    • 2010
  • 적외선영상에서 표적을 효율적으로 탐지하는 새로운 자동표적탐지 알고리즘을 제안한다. 이 연구의 목적은 실제 야지환경에서 획득된 적외선영상에서 낮은 오경보 확률로 표적의 위치를 정확히 찾는 것이다. 제안한 방법이 기존의 방법과 다른 점은 초기 탐지단계에서 사용되는 모폴로지 필터링 기법을 밝기정보를 갖고 있는 원래 입력 영상이 아닌 가버(Gabor) 응답 영상에 적용한 것과 표적과 클러터를 구분하기 위해 표적의 정확한 윤곽선 추출을 필요로 하지않는 것이다. 제안한 방법은 크게 3단계로 구성된다. 첫째로, 영상에서 돌출된 영역을 찾기 위해 입력영상으로부터 4 방향의 가버 응답을 구하고 픽셀별로 가버응답 합 영상을 구한다. 이 영상에 모폴로지 기법을 적용하여 돌출된 영역의 위치를 찾는다. 둘째로, 원래의 입력영상의 돌출된 영역에서 지역적인 질감특징 정보들을 찾는다. 마지막 단계로, 찾아진 지역적 특징 정보들이 신경회로망인 다층퍼셉트론 (Multi-Layer Perceptron)으로 입력되어 학습된 훈련 데이터들과의 비교를 통해 실제 표적과 클러터를 구분한다. 실험에서는 제안한 방법을 군사용 적외선 영상장비를 사용하여 실제 야지 환경에 획득된 영상에 적용하여 우수성과 실용가능성을 확인한다.

BLE Beacons의 RSSI를 이용한 실내 Zone인식 시스템 (Indoor Zone Recognition System using RSSI of BLE Beacon)

  • 김진평;안태기;김상훈;안치형
    • 한국철도학회논문집
    • /
    • 제19권5호
    • /
    • pp.585-591
    • /
    • 2016
  • 최근 IoT환경에서 다양한 위치기반의 서비스의 확산으로 인해 실내측위는 중요한 영역으로 자리잡고 있다. 이에 본 논문에서는 특정 공간에 시설물, 서비스 등을 고려한 가상의 영역을 Zone으로 설정하였고, 다층퍼셉트론(MLP: Multi-Layer Perceptron)을 사용하여 Zone을 인식하는 방법을 제안하였다. 제안방법의 다층퍼셉트론은 입력으로 BLE(Bluetooth Low Energy) Beacon의 RSSI(Received Signal Strength Indicator)신호를 입력으로 활용하였고 현재 위치의 소속된 Zone을 출력하였다. 제안방법의 검증을 위해서 실제 역사와 유사한 크기의 실험환경을 구축하였으며 4개의 Beacon을 설치하였고 2개의 Zone영역을 설정하였다.