• Title/Summary/Keyword: multi-path key establishment

Search Result 2, Processing Time 0.016 seconds

New Byzantine Resilient Multi-Path Key Establishment Scheme for Wireless Sensor Networks (무선 센서 네트워크를 위한 비잔틴 공격에 강인한 새로운 다중 패스 키 설정 방법)

  • Kim, Young-Sik;Jang, Ji-Woong;Lim, Dae-Woon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9C
    • /
    • pp.855-862
    • /
    • 2009
  • The path key establishment phase in the wireless sensor network is vulnerable to Byzantine attack. Huang and Hedhi proposed a Byzantine resilient multi-key establishment scheme using a systematic RS code, which has shortcomings of exposing a part of message symbols and inefficient transmission. In this paper, we propose a new Byzantine resilient multi-path key establishment scheme in which direct message symbols are not exposed to an adversary and are more efficiently transmitted the RS-encoded symbols to the destination node. In the Proposed scheme, a non-systematic RS code is used to transmit a generated indirect secret key and each encoded symbol is relayed through available paths between two sensor nodes. If enough symbols are collected at the destination node, it is possible to reconstruct the secret message through RS decoding.

Clustered Tributaries-Deltas Architecture for Energy Efficient and Secure Wireless Sensor Network (무선 센서 네트워크에서 에너지 효율성과 보안성을 제공하기 위한 클러스터 기반의 Tributaries-Deltas)

  • Kim, Eun-Kyung;Seo, Jae-Won;Chae, Ki-Joon;Choi, Doo-Ho;Oh, Kyung-Hee
    • The KIPS Transactions:PartC
    • /
    • v.15C no.5
    • /
    • pp.329-342
    • /
    • 2008
  • The Sensor Networks have limitations in utilizing energies, developing energy-efficient routing protocol and secure routing protocol are important issues in Sensor Network. In the field of data management, Tributaries and Deltas(TD) which incorporates tree topology and multi-path topology effectively have been suggested to provide efficiency and robustness in data aggregation. And our research rendered hierarchical property to TD and proposed Clustering-based Tributaries-Deltas. Through this new structure, we integrated efficiency and robustness of TD structure and advantages of hierarchical Sensor Network. Clustering-based Tributaries-Deltas was proven to perform better than TD in two situations through our research. The first is when a Base Station (BS) notices received information as wrong and requests the network's sensing data retransmission and aggregation. And the second is when the BS is mobile agent with mobility. In addition, we proposed key establishment mechanism proper for the newly proposed structure which resulted in new Sensor Network structure with improved security and energy efficiency as well. We demonstrated that the new mechanism is more energy-efficient than previous one by analyzing consumed amount of energy, and realized the mechanism on TmoteSKY sensor board using TinyOS 2.0. Through this we proved that the new mechanism could be actually utilized in network design.