• 제목/요약/키워드: multi-nuclear structure

검색결과 93건 처리시간 0.019초

Numerical evaluation of hypothetical core disruptive accident in full-scale model of sodium-cooled fast reactor

  • Guo, Zhihong;Chen, Xiaodong;Hu, Guoqing
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2120-2134
    • /
    • 2022
  • A hypothetical core destructive accident (HCDA) has received widespread attention as one of the most serious accidents in sodium-cooled fast reactors. This study combined recent advantages in numerical methods to realize realistic modeling of the complex fluid-structure interactions during HCDAs in a full-scale sodium-cooled fast reactor. The multi-material arbitrary Lagrangian-Eulerian method is used to describe the fluid-structure interactions inside the container. Both the structural deformations and plug rises occurring during HCDAs are evaluated. Two levels of expansion energy are considered with two different reactor models. The simulation results show that the container remains intact during an accident with small deformations. The plug on the top of the container rises to an acceptable level after the sealing between the it and its support is destroyed. The methodology established in this study provides a reliable approach for evaluating the safety feature of a container design.

저항 업셋 용접방식에 따른 Zircaloy-4 핵연료 피복재 용접부의 미세조직 특성 (Microstructural Characteristics of Zircaloy-4 Nuclear Fuel Cladding Welds by Resistance Upset Welding Processes)

  • 고진현;김상호;박춘호;김수성
    • Journal of Welding and Joining
    • /
    • 제20권3호
    • /
    • pp.98-104
    • /
    • 2002
  • A study on microstructures of welds for Zircaloy-4 sheath end closure by the resistance upset welding methods was carried out. Two upset welding process variations such as magnetic farce and multi-impulse resistance welding were used. Grain size and microhardness across welds were analysed in terms of welding parameters. Magnetic farce resistance weld with one cycle of unbalanced mode has smaller upset length and $\alpha-grain$ size in heat affected zone than those of multi-impulse resistance weld because of lower heat input and shorter welding time. Heat affected zone formed by two upset resistance welding variations revealed fine Widmanstatten structure or martensitic ${\alpha}'$ structure due to the high heating rate and foster cooling rate. Magnetic force resistance welds showed recrystallized grains before grain growth, whereas multi-impulse resistance welds showed full grain growth.

Radiation shielding optimization design research based on bare-bones particle swarm optimization algorithm

  • Jichong Lei;Chao Yang;Huajian Zhang;Chengwei Liu;Dapeng Yan;Guanfei Xiao;Zhen He;Zhenping Chen;Tao Yu
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2215-2221
    • /
    • 2023
  • In order to further meet the requirements of weight, volume, and dose minimization for new nuclear energy devices, the bare-bones multi-objective particle swarm optimization algorithm is used to automatically and iteratively optimize the design parameters of radiation shielding system material, thickness, and structure. The radiation shielding optimization program based on the bare-bones particle swarm optimization algorithm is developed and coupled into the reactor radiation shielding multi-objective intelligent optimization platform, and the code is verified by using the Savannah benchmark model. The material type and thickness of Savannah model were optimized by using the BBMOPSO algorithm to call the dose calculation code, the integrated optimized data showed that the weight decreased by 78.77%, the volume decreased by 23.10% and the dose rate decreased by 72.41% compared with the initial solution. The results show that the method can get the best radiation shielding solution that meets a lot of different goals. This shows that the method is both effective and feasible, and it makes up for the lack of manual optimization.

3D reconstruction of two-phase random heterogeneous material from 2D sections: An approach via genetic algorithms

  • Pizzocri, D.;Genoni, R.;Antonello, F.;Barani, T.;Cappia, F.
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.2968-2976
    • /
    • 2021
  • This paper introduces a method to reconstruct the three-dimensional (3D) microstructure of two-phase materials, e.g., porous materials such as highly irradiated nuclear fuel, from two-dimensional (2D) sections via a multi-objective optimization genetic algorithm. The optimization is based on the comparison between the reference and reconstructed 2D sections on specific target properties, i.e., 2D pore number, and mean value and standard deviation of the pore-size distribution. This represents a multi-objective fitness function subject to weaker hypotheses compared to state-of-the-art methods based on n-points correlations, allowing for a broader range of application. The effectiveness of the proposed method is demonstrated on synthetic data and compared with state-of-the-art methods adopting a fitness based on 2D correlations. The method here developed can be used as a cost-effective tool to reconstruct the pore structure in highly irradiated materials using 2D experimental data.

Study on the Structure Optimization and the Operation Scheme Design of a Double-Tube Once-Through Steam Generator

  • Wei, Xinyu;Wu, Shifa;Wang, Pengfei;Zhao, Fuyu
    • Nuclear Engineering and Technology
    • /
    • 제48권4호
    • /
    • pp.1022-1035
    • /
    • 2016
  • A double-tube once-through steam generator (DOTSG) consisting of an outer straight tube and an inner helical tube is studied in this work. First, the structure of the DOTSG is optimized by considering two different objective functions. The tube length and the total pressure drop are considered as the first and second objective functions, respectively. Because the DOTSG is divided into the subcooled, boiling, and superheated sections according to the different secondary fluid states, the pitches in the three sections are defined as the optimization variables. A multi-objective optimization model is established and solved by particle swarm optimization. The optimization pitch is small in the subcooled region and superheated region, and large in the boiling region. Considering the availability of the optimum structure at power levels below 100% full power, we propose a new operating scheme that can fix the boundaries between the three heat-transfer sections. The operation scheme is proposed on the basis of data for full power, and the operation parameters are calculated at low power level. The primary inlet and outlet temperatures, as well as flow rate and secondary outlet temperature are changed according to the operation procedure.

Effect of octadecylamine concentration on adsorption on carbon steel surface

  • Liu, Canshuai;Lin, Genxian;Sun, Yun;Lu, Jundong;Fang, Jun;Yu, Chun;Chi, Lisheng;Sun, Ke
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2394-2401
    • /
    • 2020
  • Octadecylamine is an effective film-forming amine that protects carbon steel from corrosion. In the present study, the effect of octadecylamine concentration on adsorption on a carbon steel surface was investigated in anaerobic alkaline solution by using SEM/EDS, TEM and the Materials Studio simulation techniques. TEM morphology observation and EDS elemental detection determine the thicknesses of octadecylamine film on a carbon steel surface, which are confirmed by the in-situ electrochemical impedance spectroscopy measurement and resistance calculation. The Materials Studio simulation reveals the number of octadecylamine film layers at different concentrations. Results obtained in this study indicate that adsorption of octadecylamine film on carbon steel proceeds with the multi-layer adsorption mechanism.

A Multi-Dimensional Thermal-Hydraulic System Analysis Code, MARS 1.3.1

  • Jeong, Jae-Jun;Ha, Kwi-Seok;Chung, Bub-Dong;Lee, Won-Jae
    • Nuclear Engineering and Technology
    • /
    • 제31권3호
    • /
    • pp.344-363
    • /
    • 1999
  • A multi-dimensional thermal-hydraulic system analysis code, MARS 1.3.1, has been developed in order to have the realistic analysis capability of two-phase thermal-hydraulic transients for pressurized water reactor (PWR) plants. As the backbones for the MARS code, the RELAP5/MOD3.2.1.2 and COBRA-TF codes were adopted in order to take advantages of the very general, versatile features of RELAP5 and the realistic three-dimensional hydrodynamic module of COBRA-TF. In the MARS code, all the functional modules of the two codes were unified into a single code first. Then, the source codes were converted into the standard Fortran 90, and then they were restructured using a modular data structure based on "derived type variables" and a new "dynamic memory allocation" scheme. In addition, the Windows features were implemented to improve user friendliness. This paper presents the developmental work of the MARS version 1.3.1 including the hydrodynamic model unification, the heat structure coupling, the code restructuring and modernization, and their verifications.their verifications.

  • PDF

납-고무받침에 의해 면진된 원전 격납구조물의 다중단계해석 (Multi-Step Analysis of Seismically Isolated NPP Containment Structures with Lead-Rubber Bearings)

  • 이진희;송종걸;이은행
    • 한국지진공학회논문집
    • /
    • 제18권6호
    • /
    • pp.261-269
    • /
    • 2014
  • In order to increase the seismic safety of nuclear power plant (NPP) structures in high seismicity regions, seismic isolation techniques can be adapted to NPP structures. In this paper, the applicability of multi-step analysis of seismically isolated NPP containment structures with lead-rubber bearings (LRB) is evaluated. The floor response spectrum of NPP containment structures with equivalent linear LRB and nonlinear LRB are compared. In addition, the force-displacement relationships for equivalent linear LRB and nonlinear LRB are compared.

Cell Based CMFD Formulation for Acceleration of Whole-core Method of Characteristics Calculations

  • Cho, Jin-Young;Joo, Han-Gyu;Kim, Kang-Seog;Zee, Sung-Quun
    • Nuclear Engineering and Technology
    • /
    • 제34권3호
    • /
    • pp.250-258
    • /
    • 2002
  • This Paper is to apply the well-established coarse mesh finite difference(CMFD) method to the method of characteristics(MOC) transport calculation as an acceleration scheme. The CMFD problem is first formulated at the pin-cell level with the multi-group structure To solve the cell- based multi-group CMFD problem efficiently, a two-group CMFD formulation is also derived from the multi-group CMFD formulation. The performance of the CMFD acceleration is examined for three test problems with different sizes including a realistic quarter core PWR problem. The CMFD formulation provides a significant reduction in the number of ray tracings and thus only about 9 ray tracing iterations are enough for the realistic problem. In computing time, the CMFD accelerated case is about two or three times faster than the coarse-mesh rebalancing(CMR) accelerated case.

Electromagnetic design and optimization of the multi-segment dielectric-loaded accelerating tube using genetic algorithm

  • M. Nikbakht;H. Afarideh;M. Ghergherehchi
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4625-4635
    • /
    • 2022
  • A low-energy dielectric loaded accelerator with a non-uniform, multi-segment structure is studied and optimized. So far, no analytical solution is provided for such structures. Also, due to the existing nonlinear behavior and a large number of geometric parameters, the problem of numerical optimizations is complex. For this reason, a method is presented to design and optimize such structures using the Genetic Algorithm (GA). Moreover, the GA output results are compared with Trust Region (TR) and Nelder-Mead Simplex (NMS) methods. Comparative results show that the GA is more efficient in achieving optimization goals and also has a higher speed than the two other methods. Finally, an optimized accelerating tube is integrated into a proper coupler. Then, the accelerator is simulated for full electromagnetic investigations using the CST suite of codes. This design leads to a structure with a power of about 80 kW in the X-band, which delivers electrons to the output energy in the range of 300-459 kV. The length and outer diameter of the accelerating tube obtained are 10 cm and 1 cm, respectively.