• Title/Summary/Keyword: multi-motion controller

Search Result 96, Processing Time 0.03 seconds

Development of a General Purpose Motion Controller Using a Field Programmable Gate Array (FPGA를 이용한 범용 모션 컨트롤러의 개발)

  • Kim, Sung-Soo;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.73-80
    • /
    • 2004
  • We have developed a general purpose motion controller using an FPGA(Field Programmable Gate Array). The multi-PID controllers and GUI are implemented as a system-on-chip for multi-axis motion control. Comparing with the commercial motion controller LM 629, since it has multi-independent PID controllers, we have several advantages such as space effectiveness, low cost and lower power consumption. In order to test the performance of the proposed controller, motion of the robot hand is controlled. The robot hand has three fingers with 2 joints each. Finger movements show that tracking was very effective. Another experiment of balancing an inverted pendulum on a cart has been conducted to show the generality of the proposed FPGA PID controller. The controller has well maintained the balance of the pendulum.

Development of a General Purpose PID Motion Controller Using a Field Programmable Gate Array

  • Kim, Sung-Su;Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.360-365
    • /
    • 2003
  • In this paper, we have developed a general purpose motion controller using an FPGA(Field Programmable Gate Array). The multi-PID controllers on a single chip are implemented as a system-on-chip for multi-axis motion control. We also develop a PC GUI for an efficient interface control. Comparing with the commercial motion controller LM 629 it has multi-independent PID controllers so that it has several advantages such as space effectiveness, low cost and lower power consumption. In order to test the performance of the proposed controller, robot finger is controlled. The robot finger has three fingers with 2 joints each. Finger movements show that position tracking was very effective. Another experiment of balancing an inverted pendulum on a cart has been conducted to show the generality of the proposed FPGA PID controller. The controller has well maintained the balance of the pendulum.

  • PDF

Tracking Control of Servo System using Fuzzy Logic Cross Coupled Controller (퍼지 논리형 상호결합 제어기를 이용한 서보 시스템의 추적제어)

  • 신두진;허욱열
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.8
    • /
    • pp.361-366
    • /
    • 2001
  • This thesis proposes a fuzzy logic cross coupled controller for a multi axis servo system. The overall control system consists of three elements: the axial position controller, the speed controller, and a fuzzy logic cross coupled controller. In conventional multi axis servo system, the motion of each axis is controlled independently without regard to the motion of other axes, in which the contour error, defined as the shortest distance between the desired and actual contours is compensated only by the position error of each axis. This decoupled control approach may result in degraded contouring performance due to such factors as mismatch of axial dynamics and axial loop gains. In practice, such systems contain many uncertainties, Therefore, the multi axis servo system must receive and evaluate the motion of all axes for a better contouring accuracy. Cross coupled controller utilizes all axis position error information simultaneously to produce accurate contours. However the existing cross coupled controllers cannot overcome friction, backlash and parameter variation. Also, since it is difficult to obtain an accurate mathematical model of multi axis system, here we investigate a fuzzy logic cross coupled controller method. Some simulations and experimental results are presented to illustrate the performance of the proposed controller.

  • PDF

A Study on the PC-Based Motion Controller Design for Multi-Axis Control (다축 제어용 PC-Based Motion Controller 설계에 관한 연구)

  • 안호균
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.641-644
    • /
    • 2000
  • Recently As the performance of the personal computer has been improving rapidly lots of research for the pc-based numerical computer actively progress in an easy repair maintenance and improving the performance with less cost. This paper presents the design using complex programmable logic device(CPLD). The CPU of Motion Controller that function as the real time control of the independent multi-axis motion the error-detect module and external I/O control made use of 80C196KC, In this paper The PC-NC effectively distributed to the load of NCK(numerical computer kernel) and have the advantage of high speed and precision.

  • PDF

Implementation and Performance Evaluation of Preempt-RT Based Multi-core Motion Controller for Industrial Robot (산업용 로봇 제어를 위한 Preempt-RT 기반 멀티코어 모션 제어기의 구현 및 성능 평가)

  • Kim, Ikhwan;Ahn, Hyosung;Kim, Taehyoun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Recently, with the ever-increasing complexity of industrial robot systems, it has been greatly attention to adopt a multi-core based motion controller with high cost-performance ratio. In this paper, we propose a software architecture that aims to utilize the computing power of multi-core processors. The key concept of our architecture is to use shared memory for the interplay between threads running on separate processor cores. And then, we have integrated our proposed architecture with an industrial standard compliant IDE for automatic code generation of motion runtime. For the performance evaluation, we constructed a test-bed consisting of a motion controller with Preempt-RT Linux based dual-core industrial PC and a 3-axis industrial robot platform. The experimental results show that the actuation time difference between axes is 10 ns in average and bounded up to 689 ns under $1000{\mu}s$ control period, which can come up with real-time performance for industrial robot.

robust independant controller for position, motion-inducing force, internal force of multi-robot system) (다중 로보트 시스템의 위치, 운동야기힘, 내부힘의 강건 독립 제어기)

  • 김종수;박세승;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.539-542
    • /
    • 1996
  • The forces exerted on an object by the end-effectors of multi-manipulators are decomposed into the motion-inducing force and the internal force. Motion-inducing force effects the motion of an object and internal force can't effect it. The motion of an object can't track exactly the desired motion because of internal force component, therefore internal force component must be considered. In this paper using the resolved acceleration control method and the fact that internal force lies in the null space of jacobian matrix, we construct independently the position, motion-inducing force and internal force controller. Secondly we construct the robust controller to preserve the robustness with respect to the uncertainty of manipulator parameters.

  • PDF

A Multi-Axis Contour Error Controller for High-Speed/High-Precision Machining of Free form Curves (고속 고정밀의 자유곡선 가공을 위한 다축 윤곽오차 제어)

  • 이명훈;최정희;이영문;양승한
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.64-71
    • /
    • 2004
  • The growing need for higher precision and productivity in manufacturing industry has lead to an increased interest in computer numerical control (CNC) systems. It is well known fact that the cross-coupling controller (CCC) is an effective method for contouring applications. In this paper, a multi-axis contour error controller (CEC) based on a contour error vector using parametric curve interpolator is introduced. The contour error vector is a vector from the actual tool position to the nearest point on the desired path. The contour error vector is the closest error model to the contour error. The simulation results show that the CEC is more accurate than the conventional CCC for a biaxial motion system. In addition, the experimental results on 3-axis motion system show that the CEC is simply applied to 3-axis motions and contouring accuracy is significantly improved.

Fuzzy-PID controller for motion control of CFETR multi-functional maintenance platform

  • Li, Dongyi;Lu, Kun;Cheng, Yong;Zhao, Wenlong;Yang, Songzhu;Zhang, Yu;Li, Junwei;Wu, Huapeng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2251-2260
    • /
    • 2021
  • The motion control of the divertor maintenance system of the China Fusion Engineering Test Reactor (CFETR) was studied in this paper, in which CFETR Multi-Functional Maintenance Platform (MFMP) was simplified as a parallel robot for the convenience of theoretical analysis. In order to design the motion controller of parallel robot, the kinematics analysis of parallel robot was carried out. After that, the dynamic modeling of the hydraulic system was built. As the large variation of heavy payload on MFMP and highly nonlinearity of the system, A Fuzzy-PID controller was built for self-tuning PID controller parameters by using Fuzzy system to achieve better performance. In order to test the feasibility of the Fuzzy-PID controller, the simulation model of the system was built in Simulink. The results have showed that Fuzzy-PID controller can significantly reduce the angular error of the moving platform and provide the stable motion for transferring the divertor.

Development of Programmable Automation Controllers (PACs) having Multi-Domain Functionality (다양한 도메인 기능을 갖는 PAC 시스템 개발)

  • Kim K.D.;Lee K.J.;Kim H.N.;Oh J.S.;Kim C.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.250-253
    • /
    • 2005
  • A Programmable Automation Controller (PAC) has been developed by Turbotek Co., Ltd. The developed system has multi-domain functionality-including sequence control, motion control and HMI- on a single platform. The PAC also has a common development platform for the design and integration of multi-domain automated systems. Since hardware of the developed system has modular architectures, performance and specification of the controller are determined by combination of specific modules. The developed system employs de facto standards such as OPC interface that allow users to easily exchange data as part of networked multi-vendor systems.

  • PDF

Operating Method of Network Interpolation for Motion Control Device (모션 제어장치의 네트워크 보간 운전방법)

  • Kwak, Gun-Pyong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.8
    • /
    • pp.713-718
    • /
    • 2002
  • Motion controllers are essential components for operating industrial equipments. Compared with general industrial controllers, motion controllers allow motion control requiring greater speed and precision. This paper presents a method for controlling multi-axes motors via industrial networks. To achieve a line or arc interpolation, the master system delivers instructions to slave systems connected to the network. The network instruction transmitted from the master controller is re-interpolated by the individual slaves through sub-interpolators. The re-interpolated feedrate information is transmitted to the motion control loop in which the current position and the reference position are then calculated. In this way, the interpolation driving between control units is achieved via industrial networks.