• Title/Summary/Keyword: multi-model ensemble

Search Result 95, Processing Time 0.032 seconds

Estimation of optimal runoff hydrograph using radar rainfall ensemble and blending technique of rainfall-runoff models (레이더 강우 앙상블과 유출 블랜딩 기법을 이용한 최적 유출 수문곡선 산정)

  • Lee, Myungjin;Kang, Narae;Kim, Jongsung;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.3
    • /
    • pp.221-233
    • /
    • 2018
  • Recently, the flood damage by the localized heavy rainfall and typhoon have been frequently occurred due to the climate change. Accurate rainfall forecasting and flood runoff estimates are needed to reduce such damages. However, the uncertainties are involved in guage rainfall, radar rainfall, and the estimated runoff hydrograph from rainfall-runoff models. Therefore, the purpose of this study is to identify the uncertainty of rainfall by generating a probabilistic radar rainfall ensemble and confirm the uncertainties of hydrological models through the analysis of the simulated runoffs from the models. The blending technique is used to estimate a single integrated or an optimal runoff hydrograph by the simulated runoffs from multi rainfall-runoff models. The radar ensemble is underestimated due to the influence of rainfall intensity and topography and the uncertainty of the rainfall ensemble is large. From the study, it will be helpful to estimate and predict the accurate runoff to prepare for the disaster caused by heavy rainfall.

Energy Efficient Design of a Jet Pump by Ensemble of Surrogates and Evolutionary Approach

  • Husain, Afzal;Sonawat, Arihant;Mohan, Sarath;Samad, Abdus
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.265-276
    • /
    • 2016
  • Energy systems working coherently in different conditions may not have a specific design which can provide optimal performance. A system working for a longer period at lower efficiency implies higher energy consumption. In this effort, a methodology demonstrated by a jet pump design and optimization via numerical modeling for fluid dynamics and implementation of an evolutionary algorithm for the optimization shows a reduction in computational costs. The jet pump inherently has a low efficiency because of improper mixing of primary and secondary fluids, and multiple momentum and energy transfer phenomena associated with it. The high fidelity solutions were obtained through a validated numerical model to construct an approximate function through surrogate analysis. Pareto-optimal solutions for two objective functions, i.e., secondary fluid pressure head and primary fluid pressure-drop, were generated through a multi-objective genetic algorithm. For the jet pump geometry, a design space of several design variables was discretized using the Latin hypercube sampling method for the optimization. The performance analysis of the surrogate models shows that the combined surrogates perform better than a single surrogate and the optimized jet pump shows a higher performance. The approach can be implemented in other energy systems to find a better design.

Forecasting of Iron Ore Prices using Machine Learning (머신러닝을 이용한 철광석 가격 예측에 대한 연구)

  • Lee, Woo Chang;Kim, Yang Sok;Kim, Jung Min;Lee, Choong Kwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.2
    • /
    • pp.57-72
    • /
    • 2020
  • The price of iron ore has continued to fluctuate with high demand and supply from many countries and companies. In this business environment, forecasting the price of iron ore has become important. This study developed the machine learning model forecasting the price of iron ore a one month after the trading events. The forecasting model used distributed lag model and deep learning models such as MLP (Multi-layer perceptron), RNN (Recurrent neural network) and LSTM (Long short-term memory). According to the results of comparing individual models through metrics, LSTM showed the lowest predictive error. Also, as a result of comparing the models using the ensemble technique, the distributed lag and LSTM ensemble model showed the lowest prediction.

Development of an Ensemble-Based Multi-Region Integrated Odor Concentration Prediction Model (앙상블 기반의 악취 농도 다지역 통합 예측 모델 개발)

  • Seong-Ju Cho;Woo-seok Choi;Sang-hyun Choi
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.383-400
    • /
    • 2023
  • Air pollution-related diseases are escalating worldwide, with the World Health Organization (WHO) estimating approximately 7 million annual deaths in 2022. The rapid expansion of industrial facilities, increased emissions from various sources, and uncontrolled release of odorous substances have brought air pollution to the forefront of societal concerns. In South Korea, odor is categorized as an independent environmental pollutant, alongside air and water pollution, directly impacting the health of local residents by causing discomfort and aversion. However, the current odor management system in Korea remains inadequate, necessitating improvements. This study aims to enhance the odor management system by analyzing 1,010,749 data points collected from odor sensors located in Osong, Chungcheongbuk-do, using an Ensemble-Based Multi-Region Integrated Odor Concentration Prediction Model. The research results demonstrate that the model based on the XGBoost algorithm exhibited superior performance, with an RMSE of 0.0096, significantly outperforming the single-region model (0.0146) with a 51.9% reduction in mean error size. This underscores the potential for increasing data volume, improving accuracy, and enabling odor prediction in diverse regions using a unified model through the standardization of odor concentration data collected from various regions.

Future Change Using the CMIP5 MME and Best Models: II. The Thermodynamic and Dynamic Analysis on Near and Long-Term Future Climate Change over East Asia (CMIP5 MME와 Best 모델의 비교를 통해 살펴본 미래전망: II. 동아시아 단·장기 미래기후전망에 대한 열역학적 및 역학적 분석)

  • Kim, Byeong-Hee;Moon, Hyejin;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.249-260
    • /
    • 2015
  • The changes in thermodynamic and dynamic aspects on near (2025~2049) and long-term (2075~2099) future climate changes between the historical run (1979~2005) and the Representative Concentration Pathway (RCP) 4.5 run with 20 coupled models which employed in the phase five of Coupled Model Inter-comparison Project (CMIP5) over East Asia (EA) and the Korean Peninsula are investigated as an extended study for Moon et al. (2014) study noted that the 20 models' multi-model ensemble (MME) and best five models' multi-model ensemble (B5MME) have a different increasing trend of precipitation during the boreal winter and summer, in spite of a similar increasing trend of surface air temperature, especially over the Korean Peninsula. Comparing the MME and B5MME, the dynamic factor (the convergence of mean moisture by anomalous wind) and the thermodynamic factor (the convergence of anomalous moisture by mean wind) in terms of moisture flux convergence are analyzed. As a result, the dynamic factor causes the lower increasing trend of precipitation in B5MME than the MME during the boreal winter and summer over EA. However, over the Korean Peninsula, the dynamic factor causes the lower increasing trend of precipitation in B5MME than the MME during the boreal winter, whereas the thermodynamic factor causes the higher increasing trend of precipitation in B5MME than the MME during the boreal summer. Therefore, it can be noted that the difference between MME and B5MME on the change in precipitation is affected by dynamic (thermodynamic) factor during the boreal winter (summer) over the Korean Peninsula.

An Uncertainty Assessment of Temperature and Precipitation over East Asia (동아시아 기온과 강수의 불확실성 평가)

  • Shin, Jin-Ho;Kim, Min-Ji;Lee, Hyo-Shin;Kwon, Won-Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.299-303
    • /
    • 2008
  • In this study, an uncertainty assessment for surface air temperature(T2m) and precipitation(PCP) over East Asia is carried out. The data simulated by the intergovermental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) Atmosphere-Ocean coupled general circulation Model (AOGCM) are used to assess the uncertainty. Examination of the seasonal uncertainty of T2m and PCP variabilities shows that spring-summer cold bias and fall warm bias of T2m are found over both East Asia and the Korea peninsula. In contrast, distinctly summer dry bias and winter-spring wet bias of PCP over the Korea peninsula is found. To investigate the PCP seasonal variability over East Asia, the cyclostationary empirical orthogonal function(CSEOF) analysis is employed. The CSEOF analysis can extract physical modes (spatio-temporal patterns) and their undulation (PC time series) of PCP, showing the evolution of PCP. A comparison between spatio-temporal patterns of observed and modeled PCP anomalies shows that positive PCP anomalies located in northeastern China (north of Korea) of the multi-model ensemble(MME) cannot explain properly the contribution to summer monsoon rainfalls across Korea and Japan. The uncertainty of modeled PCP indicates that there is disagreement between observed and MME anomalies. The spatio-temporal deviation of the PCP is significantly associated with lower- and upper-level circulations. In particular, lower-level moisture transports from the warm pool of the western Pacific and corresponding moisture convergence significantly contribute to summer rainfalls. These lower- and upper-level circulations physically consistent with PCP give a insight of the reason why differences between modeled and observed PCP occur.

  • PDF

Simulation of Optimal Runoff Hydrograph Using Ensemble of Radar Rainfall and Blending of RunoffsBasin (레이더 강우 앙상블과 다양한 유출모형의 블랜딩을 활용한 최적 유출곡선 산정)

  • Lee, Myung Jin;Joo, Hong Jun;Kim, Hung Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.135-135
    • /
    • 2017
  • 최근 강우-유출 모형은 물리적 현상에 근거한 확정론적 모의 모형과 물리적 성분으로 설명할 수 없는 내용에 대해 통계적으로 접근하는 추계학적 모의 모형 등이 계속 연구되고 있어 자연현상에 가까운 결과를 기대할 수 있게 되었다. 하지만 우리나라의 경우 많은 연구에도 불구하고 돌발성 집중호우, 여름철 집중되는 강우 등으로 인해 재난이 반복적으로 발생하고 있어 모형의 정확성에 대한 논의가 지속되고 있다. 동일한 유역에 동일한 입력자료를 사용하더라도 사용하는 모형에 따라 유출 분석결과는 상이하며 이는 유출 해석에 대한 불확실성으로 작용한다. 본 연구에서는 앙상블 및 블랜딩 기법을 사용하여 각 강우-유출 모형의 불확실성을 고려하여 최적 유출량을 산정하고자 한다. 대상 유역으로는 한강 수계에 있는 중랑천 유역을 선정하였으며, Distributed 모형인 Vflo 모형과 Lumped 모형인 저류함수 모형, SSARR모형, TANK 모형을 이용하여 유출 분석을 실시하였다. 그 후, Multi-Model Super Ensemble(MMSE), Simple Model Average(SMA), Mean Square Error(MSE) 방법 등의 blending 기법을 이용하여 하나의 통합된 형태의 유출 분석 결과를 제시하였으며, 최적 유출량 산정을 위한 blending 기법을 선정하였다. 본 연구를 통해 동일한 강우 시나리오에 대한 여러 강우-유출 모형에 대한 정확도를 확인하였으며, 앙상블 및 블랜딩 기법을 사용하여 유출 분석에 대한 정확도를 향상시킬 수 있을 것으로 판단된다.

  • PDF

Response of Terrestrial Carbon Cycle: Climate Variability in CarbonTracker and CMIP5 Earth System Models (기후 인자와 관련된 육상 탄소 순환 변동: 탄소추적시스템과 CMIP5 모델 결과 비교)

  • Sun, Minah;Kim, Youngmi;Lee, Johan;Boo, Kyoung-On;Byun, Young-Hwa;Cho, Chun-Ho
    • Atmosphere
    • /
    • v.27 no.3
    • /
    • pp.301-316
    • /
    • 2017
  • This study analyzes the spatio-temporal variability of terrestrial carbon flux and the response of land carbon sink with climate factors to improve of understanding of the variability of land-atmosphere carbon exchanges accurately. The coupled carbon-climate models of CMIP5 (the fifth phase of the Coupled Model Intercomparison Project) and CT (CarbonTracker) are used. The CMIP5 multi-model ensemble mean overestimated the NEP (Net Ecosystem Production) compares to CT and GCP (Global Carbon Project) estimates over the period 2001~2012. Variation of NEP in the CMIP5 ensemble mean is similar to CT, but a couple of models which have fire module without nitrogen cycle module strongly simulate carbon sink in the Africa, Southeast Asia, South America, and some areas of the United States. Result in comparison with climate factor, the NEP is highly affected by temperature and solar radiation in both of CT and CMIP5. Partial correlation between temperature and NEP indicates that the temperature is affecting NEP positively at higher than mid-latitudes in the Northern Hemisphere, but opposite correlation represents at other latitudes in CT and most CMIP5 models. The CMIP5 models except for few models show positive correlation with precipitation at $30^{\circ}N{\sim}90^{\circ}N$, but higher percentage of negative correlation represented at $60^{\circ}S{\sim}30^{\circ}N$ compare to CT. For each season, the correlation between temperature (solar radiation) and NEP in the CMIP5 ensemble mean is similar to that of CT, but overestimated.

Climate Change Scenario Generation and Uncertainty Assessment: Multiple variables and potential hydrological impacts

  • Kwon, Hyun-Han;Park, Rae-Gun;Choi, Byung-Kyu;Park, Se-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.268-272
    • /
    • 2010
  • The research presented here represents a collaborative effort with the SFWMD on developing scenarios for future climate for the SFWMD area. The project focuses on developing methodology for simulating precipitation representing both natural quasi-oscillatory modes of variability in these climate variables and also the secular trends projected by the IPCC scenarios that are publicly available. This study specifically provides the results for precipitation modeling. The starting point for the modeling was the work of Tebaldi et al that is considered one of the benchmarks for bias correction and model combination in this context. This model was extended in the framework of a Hierarchical Bayesian Model (HBM) to formally and simultaneously consider biases between the models and observations over the historical period and trends in the observations and models out to the end of the 21st century in line with the different ensemble model simulations from the IPCC scenarios. The low frequency variability is modeled using the previously developed Wavelet Autoregressive Model (WARM), with a correction to preserve the variance associated with the full series from the HBM projections. The assumption here is that there is no useful information in the IPCC models as to the change in the low frequency variability of the regional, seasonal precipitation. This assumption is based on a preliminary analysis of these models historical and future output. Thus, preserving the low frequency structure from the historical series into the future emerges as a pragmatic goal. We find that there are significant biases between the observations and the base case scenarios for precipitation. The biases vary across models, and are shrunk using posterior maximum likelihood to allow some models to depart from the central tendency while allowing others to cluster and reduce biases by averaging. The projected changes in the future precipitation are small compared to the bias between model base run and observations and also relative to the inter-annual and decadal variability in the precipitation.

  • PDF

Performance Characteristics of an Ensemble Machine Learning Model for Turbidity Prediction With Improved Data Imbalance (데이터 불균형 개선에 따른 탁도 예측 앙상블 머신러닝 모형의 성능 특성)

  • HyunSeok Yang;Jungsu Park
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.107-115
    • /
    • 2023
  • High turbidity in source water can have adverse effects on water treatment plant operations and aquatic ecosystems, necessitating turbidity management. Consequently, research aimed at predicting river turbidity continues. This study developed a multi-class classification model for prediction of turbidity using LightGBM (Light Gradient Boosting Machine), a representative ensemble machine learning algorithm. The model utilized data that was classified into four classes ranging from 1 to 4 based on turbidity, from low to high. The number of input data points used for analysis varied among classes, with 945, 763, 95, and 25 data points for classes 1 to 4, respectively. The developed model exhibited precisions of 0.85, 0.71, 0.26, and 0.30, as well as recalls of 0.82, 0.76, 0.19, and 0.60 for classes 1 to 4, respectively. The model tended to perform less effectively in the minority classes due to the limited data available for these classes. To address data imbalance, the SMOTE (Synthetic Minority Over-sampling Technique) algorithm was applied, resulting in improved model performance. For classes 1 to 4, the Precision and Recall of the improved model were 0.88, 0.71, 0.26, 0.25 and 0.79, 0.76, 0.38, 0.60, respectively. This demonstrated that alleviating data imbalance led to a significant enhancement in Recall of the model. Furthermore, to analyze the impact of differences in input data composition addressing the input data imbalance, input data was constructed with various ratios for each class, and the model performances were compared. The results indicate that an appropriate composition ratio for model input data improves the performance of the machine learning model.