• Title/Summary/Keyword: multi-mobile robot

Search Result 183, Processing Time 0.062 seconds

Localization of Mobile Robot Using Multi IR Range Sensors (다중 IR 거리센서를 이용한 이동로봇의 자기위치 인식)

  • Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.744-748
    • /
    • 2007
  • In this paper, a new localization method of indoor mobile robot using multi IR(infrared) range sensors is proposed. Each IR range sensor detects the edge of obstacles and wall using the acquired range data. The environment map is built by the merging process of the detected edge data of each sensor. The performance of proposed system is verified by the comparison of the real environment and the detected map in experiments.

Human-Tracking Behavior of Mobile Robot Using Multi-Camera System in a Networked ISpace (공간지능화에서 다중카메라를 이용한 이동로봇의 인간추적행위)

  • Jin, Tae-Seok;Hashimoto, Hideki
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.4
    • /
    • pp.310-316
    • /
    • 2007
  • The paper proposes a human-following behavior of mobile robot and an intelligent space (ISpace) is used in order to achieve these goals. An ISpace is a 3-D environment in which many sensors and intelligent devices are distributed. Mobile robots exist in this space as physical agents providing humans with services. A mobile robot is controlled to track a walking human using distributed intelligent sensors as stably and precisely as possible. The moving objects is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the intelligent space. Uncertainties in the position estimation caused by the point-object assumption are compensated using the Kalman filter. To generate the shortest time trajectory to track the walking human, the linear and angular velocities are estimated and utilized. The computer simulation and experimental results of estimating and trackinging of the walking human with the mobile robot are presented.

  • PDF

Real-time 3D multi-pedestrian detection and tracking using 3D LiDAR point cloud for mobile robot

  • Ki-In Na;Byungjae Park
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.836-846
    • /
    • 2023
  • Mobile robots are used in modern life; however, object recognition is still insufficient to realize robot navigation in crowded environments. Mobile robots must rapidly and accurately recognize the movements and shapes of pedestrians to navigate safely in pedestrian-rich spaces. This study proposes real-time, accurate, three-dimensional (3D) multi-pedestrian detection and tracking using a 3D light detection and ranging (LiDAR) point cloud in crowded environments. The pedestrian detection quickly segments a sparse 3D point cloud into individual pedestrians using a lightweight convolutional autoencoder and connected-component algorithm. The multi-pedestrian tracking identifies the same pedestrians considering motion and appearance cues in continuing frames. In addition, it estimates pedestrians' dynamic movements with various patterns by adaptively mixing heterogeneous motion models. We evaluate the computational speed and accuracy of each module using the KITTI dataset. We demonstrate that our integrated system, which rapidly and accurately recognizes pedestrian movement and appearance using a sparse 3D LiDAR, is applicable for robot navigation in crowded spaces.

Evolutionary Generation of the Motions for Cooperative Work between Humanoid and Mobile Robot (휴머노이드와 모바일 로봇의 협조작업을 위한 진화적 동작 생성)

  • Jang, Jae-Young;Seo, Ki-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.107-113
    • /
    • 2010
  • In this paper, a prototype of cooperative work model for multi-robots system is introduced and the evolutionary approach is applied to generate the motions for the cooperative works of multi-robots system using genetic algorithm. The cooperative tasks can be performed by a humanoid robot and a mobile robot to deliver objects from shelves. Generation of the humanoid motions such as pick up, rotation, and place operation for the cooperative works are evolved. Modeling and computer simulation for the cooperative robots system are executed in Webots environments. Experimental results show the feasible and reasonable solutions for humanoid cooperative tasks are obtained.

Cooperative Particle Swarm Optimization-based Model Predictive Control for Multi-Robot Formation (군집 로봇 편대 제어를 위한 협력 입자 군집 최적화 알고리즘 기반 모델 예측 제어 기법)

  • Lee, Seung-Mok;Kim, Hanguen;Myung, Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.429-434
    • /
    • 2013
  • This paper proposes a CPSO (Cooperative Particle Swarm Optimization)-based MPC (Model Predictive Control) scheme to deal with formation control problem of multiple nonholonomic mobile robots. In a distributed MPC framework, each robot needs to optimize control input sequence over a finite prediction horizon considering control inputs of the other robots where their cost functions are coupled by the state variables of the neighboring robots. In order to optimize the control input sequence, a CPSO algorithm is adopted and modified to fit into the formation control problem. Experiments are performed on a group of nonholonomic mobile robots to demonstrate the effectiveness of the proposed CPSO-based MPC for multi-robot formation.

Real-Time Correction Based on wheel Odometry to Improve Pedestrian Tracking Performance in Small Mobile Robot (소형 이동 로봇의 사람 추적 성능 개선을 위한 휠 오도메트리 기반 실시간 보정에 관한 연구)

  • Park, Jaehun;Ahn, Min Sung;Han, Jeakweon
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.124-132
    • /
    • 2022
  • With growth in intelligence of mobile robots, interaction with humans is emerging as a very important issue for mobile robots and the pedestrian tracking technique following the designated person is adopted in many cases in a way that interacts with humans. Among the existing multi-object tracking techniques for pedestrian tracking, Simple Online and Realtime Tracking (SORT) is suitable for small mobile robots that require real-time processing while having limited computational performance. However, SORT fails to reflect changes in object detection values caused by the movement of the mobile robot, resulting in poor tracking performance. In order to solve this performance degradation, this paper proposes a more stable pedestrian tracking algorithm by correcting object tracking errors caused by robot movement in real time using wheel odometry information of a mobile robot and dynamically managing the survival period of the tracker that tracks the object. In addition, the experimental results show that the proposed methodology using data collected from actual mobile robots maintains real-time and has improved tracking accuracy with resistance to the movement of the mobile robot.

Localization and Control of an Outdoor Mobile Robot Based on an Estimator with Sensor Fusion (센서 융합기반의 추측항법을 통한 야지 주행 이동로봇의 위치 추정 및 제어)

  • Jeon, Sang Woon;Jeong, Seul
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.2
    • /
    • pp.69-78
    • /
    • 2009
  • Localization is a very important technique for the mobile robot to navigate in outdoor environment. In this paper, the development of the sensor fusion algorithm for controlling mobile robots in outdoor environments is presented. The multi-sensorial dead-reckoning subsystem is established based on the optimal filtering by first fusing a heading angle reading data from a magnetic compass, a rate-gyro, and two encoders mounted on the robot wheels, thereby computing the dead-reckoned location. These data and the position data provided by a global sensing system are fused together by means of an extended Kalman filter. The proposed algorithm is proved by simulation studies of controlling a mobile robot controlled by a backstepping controller and a cascaded controller. Performances of each controller are compared.

  • PDF

Intelligent Trace Algorithm of Mobile Robot Using Fuzzy Logic

  • Kim, Jong-Soo;Kim, Seong-Joo;Jeon, Hong-Tae
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1658-1661
    • /
    • 2002
  • In this paper, we propose the intelligent inference trace algorithm of the mobile robot using fuzzy logic. With the proposed algorithm, the mobile robot can trace human at regular intervals. The mobile robot can recognize the distances between it and human with both multi-ultrasonic sensors and PC-camera and then, can inference the direction and velocity of itself to keep the given regular distances. In the first, the mobile robot acquires the information about circumstances using ultrasonic sensor and PC-camera then secondly, recognize the status of circumstances using the fuzzy logic. We also evaluate the experimental navigation test at several times to verify the ability of the fuzzy logic controller.

  • PDF

Mobile Robot for Indoor Air Quality Monitoring (이동형 실내 공기질 측정 로봇)

  • Lee, So-Hwa;Koh, Dong-Jin;Kim, Na-Bin;Park, Eun-Seo;Jeon, Dong-Ryeol;Bong, Jae Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.537-542
    • /
    • 2022
  • There is a limit to the current indoor air quality (IAQ) monitoring method using fixed sensors and devices. A mobile robot for IAQ monitoring was developed by mounting IAQ monitoring sensors on a small multi-legged robot to minimize vibration and protect the sensors from vibration while robot moves. The developed mobile robot used a simple gait mechanism to enable the robot to move forward, backward, and turns only with the combination of forward and reverse rotation of the two DC motors. Due to the simple gait mechanism, not only IAQ data measurements but also gait motion control were processed using a single Arduino board. Because the mobile robot has small number of electronic components and low power consumption, a relatively low-capacity battery was mounted on the robot to reduce the weight of the battery. The weight of mobile robot is 1.4kg including links, various IAQ sensors, motors, and battery. The gait and turning speed of the mobile robot was measured at 3.75 cm/sec and 14.13 rad/sec. The maximum height where the robot leg could reach was 33 mm, but the mobile robot was able to overcome the bumps up to 24 mm.

Multisensor-Based Navigation of a Mobile Robot Using a Fuzzy Inference in Dynamic Environments (동적환경에서 퍼지추론을 이용한 이동로봇의 다중센서기반의 자율주행)

  • 진태석;이장명
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.79-90
    • /
    • 2003
  • In this paper, we propose a multisensor-based navigation algorithm for a mobile robot, which is intelligently searching the goal location in unknown dynamic environments using multi-ultrasonic sensor. Instead of using “sensor fusion” method which generates the trajectory of a robot based upon the environment model and sensory data, “command fusion” method by fuzzy inference is used to govern the robot motions. The major factors for robot navigation are represented as a cost function. Using the data of the robot states and the environment, the weight value of each factor using fuzzy inference is determined for an optimal trajectory in dynamic environments. For the evaluation of the proposed algorithm, we performed simulations in PC as well as experiments with IRL-2002. The results show that the proposed algorithm is apt to identify obstacles in unknown environments to guide the robot to the goal location safely.