• Title/Summary/Keyword: multi-metric model

Search Result 65, Processing Time 0.029 seconds

The Effect Analysis of the Improved Vari-METRIC in Multi-Echelon Inventory Model (Vari-METRIC을 개선한 다단계 재고모형의 효과측정)

  • Yoon, Hyouk;Lee, Sang-Jin
    • Korean Management Science Review
    • /
    • v.28 no.1
    • /
    • pp.117-127
    • /
    • 2011
  • In the Multi-Echelon maintenance environment, METRIC(Multi-Echelon Technique for Repairable Item Control) has been used in several different inventory level selection models, such as MOD-METRIC, Vari-METRIC, and Dyna- ETRIC. While this model's logic is easy to be implemented, a critical assumption of infinite maintenance capacity would deteriorate actual values, especially Expected Back Order(EBO)s for each item. To improve the accuracy of EBO, we develop two models using simulation and queueing theory that calculates EBO considering finite capacity. The result of our numerical example shows that the expected backorder from our model is much closer to the true value than the one from Vari-METRIC. The queueing model is preferable to the simulation model regarding the computational time.

Objective Image Quality Metric for Block-Based DCT Image Coder Using Structural Distortion Measurement (구조적 왜곡특성 측정을 이용한 블록기반 DCT 영상 부호화기의 객관적 화질평가)

  • Chung Tae-Yun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.7
    • /
    • pp.434-441
    • /
    • 2003
  • This paper proposes a new quantitative and objective image quality metric which is essential to verify the performance of block-based DCT image coding. The proposed metric considers not only global distortion of coded image such as spatial frequency sensitivity and channel masking using HVS based multi-channel model, but also structural distortions caused block-based coding. The experimental results show a strong correlation between proposed metric and subjective metric.

Objective Image Quality Metric for Block-Based DCT Image Coder-using Structural Distortion Measurement (구조적 왜곡특성 측정을 이용한 블록기반 DCT 영상 부호화기의 객관적 화질평가)

  • Jeong, Tae Yun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.434-434
    • /
    • 2003
  • This paper proposes a new quantitative and objective image quality metric which is essential to verify the performance of block-based DCT image coding The proposed metric considers not only global distortion of coded image such as spatial frequency sensitivity and channel masking using HVS based multi-channel model, but also structural distortions caused block-based coding. The experimental results show a strong correlation between propose(B metric and subjective metric.

A Study on the Repair Parts Inventory Cost Estimation and V-METRIC Application for PBL Contract (PBL 계약을 위한 수리부속 재고비용 예측과 V-METRIC의 활용에 관한 연구)

  • Kim, Yoon Hwa;Lee, Sung Yong
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.79-88
    • /
    • 2017
  • For the PBL contract, it is necessary for the contracting parties to share information regarding the reasonable inventory-level and the cost of its repair parts for the estimated demand. There are various models which can be used for this purpose. Among them, V-METRIC model is considered to be the most efficient and is most frequently applied. However, this model is usually used for optimizing the inventory level of the repair parts of the system under operation. The model uses a time series forecast model to determine the demand rate, which is a mandatory input factor for the model, based on past field data. However, since the system at the deployment stage has no operational performance record, it is necessary to find another alternative to be used as the demand rate of the model application. This research applies the V-METRIC model to find the optimal inventory level and cost estimation for repairable items to meet the target operational availability, which is a key performance indicator, at the time of the PBL contract for the deployment system. This study uses the calculated value based on the allocated MTBF to the system as the demand rate, which is used as input data for the model. Also, we would like to examine changes in inventory level and cost according to the changes in target operational availability and MTBF allocation.

A Development of Multi-metric Approach for Ecological Health Assessments in Lentic Ecosystems (정수 생태계 건강성 평가를 위한 다변수 메트릭 모델 개발)

  • An, Kwang-Guk;Han, Jung-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.72-81
    • /
    • 2007
  • The purpose of this study was to develop a multi-metric Lentic Ecosystem Health Assessment (LEHA) model and apply model to dataset sampled from Daechung Reservoir in September 2005. The metrics were composed of 11 parameters such as physical, chemical and biological variables. The metric attributes of $M_1{\sim}M_8$ followed after the model of biological integrity using fish assemblages that previously adapted in lotic ecosystems, while the metrics of $M_9{\sim}M_{11}$ were added on the basis of literature. The metric of $M_9$ reflected habitat conditions in the littoral zone and the metric of $M_{10}$ reflected chemical conditions of the reservoir. For the application of regression analysis of long-transformed conductivity [$Log_{10}$(Cond)] against $COD_{Mn}$, based on 150 sampling sites at Korean reservoirs, showed that the variation of conductivity was explained 77.4% [$COD_{Mn}=4.42{\times}Log_{10}(Cond)-5.43;\;R^2=0.774$, p<0.01, n=150] by the variation of $COD_{Mn}$. The metric of $M_{11}$ was based on Tropic State Index (TSI), based on chlorophyll-${\alpha}$ concentrations (Chl-${\alpha}$). Analysis of TSI $(Chl-{\alpha})$ showed that above 50 was estimated "1", $40{\sim}50$ was estimated "3" and below 40% was estimated '5'. Overall, velues of LEHA in the reservoir averaged 30.5, indicating a "fair${\sim}$poor condition", which is judged by the criteria of U.S. EPA (1993). More studies such as metric numbers and attributes should be done for the application of the model.

Ecological Assessments of Aquatic Environment using Multi-metric Model in Major Nationwide Stream Watersheds (우리나라 주요하천 수계에서 다변수모델을 이용한 생태학적 수환경 평가)

  • An, Kwang-Guk;Lee, Jae-Yon;Bae, Dae-Yeul;Kim, Ja-Hyun;Hwang, Soon-Jin;Won, Doo-Hee;Lee, Jae-Kwan;Kim, Chang-Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.796-804
    • /
    • 2006
  • The objective of this research was to develop ecological multi-metric models using natural fish assemblages for a diagnosis of current stream health condition, and apply the model to nationwide lotic ecosystems of the Geum River, the Youngsan River, and the Sumjin River. The ecological stream health model was based on the index of biological integrity (IBI), which was originally developed in North American streams by Karr (1981), and the Rapid Bioassessment Protocol (RBP), which was scientifically established by the US EPA (1999). The metric numbers and metric attributes were partially changed for the regional applications, so the scoring criteria was modified for the assessment. Overall, metric values, based on the IBI calculations, reflected conventional water quality characteristics, based on nutrient regime, and agreed with results of staticeco-toxicity tests. Some stations impaired in terms of stream health were identified by the IBI approach, and also major key stressors affecting the stream health were identified by additional evaluations of physical habitats. Our preliminary results suggested that biological integrity in stream ecosystems was largely disturbed by habitat degradation as well as chemical pollutions. This new approach would be used as a key tool for ecological restorations and species conservations in the degraded aquatic ecosystems in Korea and applied for elucidating major causes of ecological disturbances. Ultimately, this approach provides us an effective management strategy of stream ecosystems through establishments of ecological networks in various watersheds.

A Novel Routing Algorithm Based on Load Balancing for Multi-Channel Wireless Mesh Networks

  • Liu, Chun-Xiao;Chang, Gui-Ran;Jia, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.651-669
    • /
    • 2013
  • In this paper, we study a novel routing algorithm based on load balancing for multi-channel wireless mesh networks. In order to increase the network capacity and reduce the interference of transmission streams and the communication delay, on the basis of weighted cumulative expected transmission time (WCETT) routing metric this paper proposes an improved routing metric based on load balancing and channel interference (LBI_WCETT), which considers the channel interference, channel diversity, link load and the latency brought by channel switching. Meanwhile, in order to utilize the multi-channel strategy efficiently in wireless mesh networks, a new channel allocation algorithm is proposed. This channel allocation algorithm utilizes the conflict graph model and considers the initial link load estimation and the potential interference of the link to assign a channel for each link in the wireless mesh network. It also utilizes the channel utilization percentage of the virtual link in its interference range as the channel selection standard. Simulation results show that the LBI_WCETT routing metric can help increase the network capacity effectively, reduce the average end to end delay, and improve the network performance.

Physicochemical water quality characteristics in relation to land use pattern and point sources in the basin of the Dongjin River and the ecological health assessments using a fish multi-metric model

  • Jang, Geon-Su;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.34-44
    • /
    • 2016
  • Background: Little is known about how chemical water quality is associated with ecological stream health in relation to landuse patterns in a watershed. We evaluated spatial characteristics of water quality characteristics and the ecological health of Dongjin-River basin, Korea in relation to regional landuse pattern. The ecological health was assessed by the multi-metric model of Index of Biological Integrity (IBI), and the water chemistry data were compared with values obtained from the health model. Results: Nutrient and organic matter pollution in Dongjin-River basin, Korea was influenced by land use pattern and the major point sources, so nutrients of TN and TP increased abruptly in Site 4 (Jeongeup Stream), which is directly influenced by wastewater treatment plants along with values of electric conductivity (EC), bacterial number, and sestonic chlorophyll-a. Similar results are shown in the downstream (S7) of Dongjin River. The degradation of chemical water quality in the downstream resulted in greater impairment of the ecological health, and these were also closely associated with the landuse pattern. Forest region had low nutrients (N, P), organic matter, and ionic content (as the EC), whereas urban and agricultural regions had opposite in the parameters. Linear regression analysis of the landuse (arable land; $A_L$) on chemicals indicated that values of $A_L$ had positive linear relations with TP ($R^2=0.643$, p < 0.01), TN ($R^2=0.502$, p < 0.05), BOD ($R^2=0.739$, p < 0.01), and suspended solids (SS; ($R^2=0.866$, p < 0.01), and a negative relation with TDN:TDP ratios ($R^2=0.719$, p < 0.01). Conclusions: Chemical factors were closely associated with land use pattern in the watershed, and these factors influenced the ecological health, based on the multimetric fish IBI model. Overall, the impairments of water chemistry and the ecological health in Dongjin-River basin were mainly attributes to point-sources and land-use patterns.

The Development and Application of Multi-metric Water Quality Assessment Model for Reservoir Managements in Korea. (우리나라 인공호 관리를 위한 다변수 수질평가 모델의 개발 및 적용)

  • Lee, Hyun-Joon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.242-252
    • /
    • 2009
  • The purpose of this study was to develop a Multi-metric Water Quality Assessment (MWQA) model and apply it to dataset sampled from Paldang and Daechung reservoir in 2008. The various water dataset used to this study included 5 year data sets (2003${\sim}$2007) in Korean reservoirs which were obtained from the Ministry of Environment, Korea. In this study, suggested MWQA model has 4 metrics that were composed of 4 parameters such as chemical, physical, biological, and hydrological variables. And, each of the variables attributed total phosphorus (TP) concentration in water, secchi depth (SD) measure in water, chlorophyll-${\alpha}$(Chl-${\alpha}$) concentration in water and the ratio of inflow of water into lakes and efflux of water from lakes, input/output (I/O). First, we established the criteria for trophic boundaries. The boundary between oligotrophic and mesotrophic categories was defined by the lower third of the cumulative distribution of the values. The mesotrophic-eutrophic boundary was defined by the upper third of the distribution. Second, each metric was given by a point-oligo=1, meso=3, eu=5. And then, obtained total score from each metric was divided 5 grade-Excellent, Good, Fair, Poor, and Very poor. As the results of applying the proposed MWQA model, the Paldang reservoir obtained "Fair" or "Poor" grade and Daechung reservoir obtained "Excellent" or "Good" grade. The suggested MWQA model through these procedures will enable to manage efficiently the reservoir. And, more studies such as metric numbers and attributes should be done for the accurate application of the new model.

Ecological Health Assessments, Conservation and Management in Korea Using Fish Multi-Metric Model (어류를 이용한 한국의 하천생태계 건강성 평가)

  • An, Kwang-Guk;Lee, Sang-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.1
    • /
    • pp.86-95
    • /
    • 2018
  • The objective of this study was to describe the development and testing of an initial ecological health assessment model, based on the index of biological integrity (IBI) using fish assemblages, before establishing the final and currently used model for ecological health assessment, conservation and management of freshwater fish in Korea. The initial fish IBI model was developed during 2004~2006 and included 10 metrics, and in 2007 the final IBI 8-metric model was established for application to streams and rivers in four major Korean watersheds. In this paper, we describe how we developed fish sampling methods, determined metric attributes and categorized tolerance guilds and trophic guilds during the development of the multi-metric model. Two of the initial metrics were removed and the initial evaluation categories were reduced from six to four (excellent, good, fair, poor) before establishing the final national fish model. In the development phase, IBI values were compared with chemical parameters (BOD and COD as indicators of organic matter pollution) and physical habitat parameters to identify differences in IBI model values between chemical and physical habitat conditions. These processes undertaken during the development of the IBI model may be helpful in understanding the modifications made and contribute to creating efficient conservation and management strategies for stream environments to be used by limnologists and fish ecologists as well as stream/watershed managers.