• Title/Summary/Keyword: multi-measure modeling

Search Result 41, Processing Time 0.03 seconds

Robust Observer Design for Multi-Output Systems Using Eigenstructure Assignment (고유구조 지정을 이용한 다중출력 시스템의 강인한 관측기 설계)

  • Huh, Kun-Soo;Nam, Joon-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1621-1628
    • /
    • 2004
  • This paper proposes a design methodology for the robust observer using the eigenstructure assignment in multi-output systems so that the observer is less sensitive to the ill-conditioning factors such as unknown initial estimation error, modeling error and measurement bias in transient and steady-state observer performance. The robustness of the observer can be achieved by selecting the desired eigenvector matrix to have a small condition number that guarantees the small upper bound of the estimation error. So the left singular vectors of the unitary matrix spanned by space of the achievable eigenvectors are selected as a desired eigenvectors. Also, this paper proposes how to select the desired eigenvector based on the measure of observability and designs the observer with small gain. An example of a spindle drive system is simulated to validate the robustness to the ill-conditioning factors in the observer performance.

(Effective Intrusion Detection Integrating Multiple Measure Models) (다중척도 모델의 결합을 이용한 효과적 인 침입탐지)

  • 한상준;조성배
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.3
    • /
    • pp.397-406
    • /
    • 2003
  • As the information technology grows interests in the intrusion detection system (IDS), which detects unauthorized usage, misuse by a local user and modification of important data, has been raised. In the field of anomaly-based IDS several artificial intelligence techniques such as hidden Markov model (HMM), artificial neural network, statistical techniques and expert systems are used to model network rackets, system call audit data, etc. However, there are undetectable intrusion types for each measure and modeling method because each intrusion type makes anomalies at individual measure. To overcome this drawback of single-measure anomaly detector, this paper proposes a multiple-measure intrusion detection method. We measure normal behavior by systems calls, resource usage and file access events and build up profiles for normal behavior with hidden Markov model, statistical method and rule-base method, which are integrated with a rule-based approach. Experimental results with real data clearly demonstrate the effectiveness of the proposed method that has significantly low false-positive error rate against various types of intrusion.

Investigation of Target Echoes in Multi-static SONAR system - Part II : Numerical Modeling with Experimental Verification (다중상태 소나시스템을 적용한 표적반향음 연구 - Part II : 수치모델링과 실험적 검증)

  • Ji, Yoon Hee;Bae, Ho Seuk;Byun, Gi-Hoon;Kim, Jea Soo;Kim, Woo-Shik;Park, Sang-Yoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.440-451
    • /
    • 2014
  • A multi-static SONAR system consists of the transmitters and receivers separately in space. The active target echoes are received along the transmitter-target-receiver path and depend on the shape and aspect angle of the submerged objects at each receiver. Thus, the target echo algorithm used with a mono-static system, in which the transmitter and receiver are located at the same position, has limits in simulating the target echoes for a multi-static SONAR system. In this paper, a target echo modeling procedure for a 3D submerged object in space is described based on the Kirchhoff approximation, and the SONAR system is extended to a multi-static SONAR system. The scattered field from external structures is calculated on the visible surfaces, which is determined based on the locations of the transmitter and receiver. A series of experiments in an acoustic water tank was conducted to measure the target echoes from scaled targets with a single transmitter and 16 receivers. Finally, the numerical results were compared with experimental results and shown to be useful for simulating the target echoes/target strength in a multi-static SONAR system.

Probabilistic sensitivity analysis of multi-span highway bridges

  • Bayat, M.;Daneshjoo, F.;Nistico, N.
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.237-262
    • /
    • 2015
  • In this study, we try to compare different intensity measures for evaluating nonlinear response of bridge structure. This paper presents seismic analytic fragility of a three-span concrete girder highway bridge. A complete detail of bridge modeling parameters and also its verification has been presented. Fragility function considers the relationship of intensities of the ground motion and probability of exceeding certain state of damage. Incremental dynamic analysis (IDA) has been subjected to the bridge from medium to strong ground motions. A suite of 20 earthquake ground motions with different range of PGAs are used in nonlinear dynamic analysis of the bridge. Complete sensitive analyses have been done on the response of bridge and also efficiency and practically of them are studied to obtain a proficient intensity measure for these types of structure by considering its sensitivity to the period of the bridge. Three dimensional finite element (FE) model of the bridge is developed and analyzed. The numerical results show that the bridge response is very sensitive to the earthquake ground motions when PGA and Sa (Ti, 5%) are used as intensity measure (IM) and also indicated that the failure probability of the bridge system is dominated by the bridge piers.

Multi-Focusing Image Capture System for 3D Stereo Image (3차원 영상을 위한 다초점 방식 영상획득장치)

  • Ham, Woon-Chul;Kwon, Hyeok-Jae;Enkhbaatar, Tumenjargal
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.2
    • /
    • pp.118-129
    • /
    • 2011
  • In this paper, we suggest a new camera capturing and synthesizing algorithm with the multi-captured left and right images for the better comfortable feeling of 3D depth and also propose 3D image capturing hardware system based on the this new algorithm. We also suggest the simple control algorithm for the calibration of camera capture system with zooming function based on a performance index measure which is used as feedback information for the stabilization of focusing control problem. We also comment on the theoretical mapping theory concerning projection under the assumption that human is sitting 50cm in front of and watching the 3D LCD screen for the captured image based on the modeling of pinhole Camera. We choose 9 segmentations and propose the method to find optimal alignment and focusing based on the measure of alignment and sharpness and propose the synthesizing fusion with the optimized 9 segmentation images for the best 3D depth feeling.

Development portable hair removal applies PET ($Pause^{10-90}$ and $Energy^{20-40}$ $Trigger^{1-7}$) function

  • Kim, Whi-Young
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.223-230
    • /
    • 2009
  • For pulse trigger way and the energy injection rate according to PET ($Pause^{10-90}$ $Energy^{20-40}$ $Trigger^{1-7}$) function, indeed, human body condition, period of dormancy in this research about this back correctly adjustment possible and designed harmless micro carrying along style hair exclusion so that can design and manufacture and run special quality examination and Xenon flash lamp to crawl in human body. Because creating individual's skin model to do stable treatment by light transmission way by skin impedance and measure, must embody treatment special quality of most suitable that draw skin color, energy, wave length, approximately, transmission time, pulse delay etc. and want. Specially, saved standard of war treatment pulse modeling by skin impedance, and manufacture pulse modeling system of most suitable by skin subordinate, and embody suitable treatment pulse. Specially, embody as could do root of a hair exclusion being emitted in pulse form using multi wave length of 560nm, 590nm, 640nm, 755nm and embodied clinical data. If become research repletion furthermore little more, is seen that can approximate in commercialization.

A novel surface plasmon resonance sensor without using imaging devices (영상 소자를 사용하지 않는 새로운 표면 플라즈몬 공명 센서)

  • Lee, Seung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.347-351
    • /
    • 2006
  • A novel surface plasmon resonance sensor, which can measure 2-dimensional array of immobilized ligands without using imaging devices such as CCD, has been proposed. Regular surface plasmon resonance can be directly used due to the insertion of additional layers with different thickness, on which each ligands are immobilized. Surface plasmon resonance signals are separated depending on the thickness of additional layers. The possibility of multi-sensing capability of the proposed surface plasmon resonance sensor has been verified by the modeling that is based on Fresnel reflection model.

Decimation Chain Modeling for Dual-Band Radio Receiver and Its Operation for Continuous Packet Connectivity

  • Park, Chester Sungchung;Park, Sungkyung
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.4
    • /
    • pp.235-240
    • /
    • 2015
  • A decimation chain for multi-standard reconfigurable radios is presented for 900-MHz and 1,900-MHz dual-band cellular standards with a data interpolator based on the Lagrange method for adjusting the variable data rate to a fixed data rate appropriate for each standard. The two proposed configurations are analyzed and compared to provide insight into aliasing and the signal bandwidth by means of a newly introduced measure called interpolation error. The average interpolation error is reduced as the ratio of the sampling frequency to the signal BW is increased. The decimation chain and the multi-rate analog-to-digital converter are simulated to compute the interpolation error and the output signal-to-noise ratio. Further, a method to operate the above-mentioned chain under a compressed mode of operation is proposed in order to guarantee continuous packet connectivity for inter-radio-access technologies. The presented decimation chain can be applied to LTE, WCDMA, GSM multi-mode multi-band digital front-end which will ultimately lead to the software-defined radio.

Quality of Service Assurance Model for AMR Voice Traffic in Downlink WCDMA System (순방향 WCDMA 채널에서 AMR 음성 트래픽의 품질 보증 모델)

  • Jung, Sung Hwan;Hong, Jung Wan;Lie, Chang Hoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.2
    • /
    • pp.191-200
    • /
    • 2007
  • We propose the QoS (Quality of Service) assurance model for AMR (Adaptive MultiRate) voice users considering the capacity and service quality jointly in downlink WCDMA system. For this purpose, we introduce a new system performance measure and the number-based AMR mode allocation scheme. The proposed number-based AMR mode allocation can be operated only with the information of total number of ongoing users. Therefore, it can be more simply implemented than the existing power-based allocation. The proposed system performance measure considers the stochastic variations of AMR modes of ongoing users and can be analytically obtained using CTMC (Continuous Time Markov Chain) modeling. In order to validate the proposed analytical model, a discrete event-based simulation model is also developed. The performance measure obtained from the analytical model is in agreement with the simulation results and is expected to be useful for parameter optimization.

Optimum design of steel frame structures considering construction cost and seismic damage

  • Kaveh, A.;Fahimi-Farzam, M.;Kalateh-Ahani, M.
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.1-26
    • /
    • 2015
  • Minimizing construction cost and reducing seismic damage are two conflicting objectives in the design of any new structure. In the present work, we try to develop a framework in order to solve the optimum performance-based design problem considering the construction cost and the seismic damage of steel moment-frame structures. The Park-Ang damage index is selected as the seismic damage measure because it is one of the most realistic measures of structural damage. The non-dominated sorting genetic algorithm (NSGA-II) is employed as the optimization algorithm to search the Pareto optimal solutions. To improve the time efficiency of the proposed framework, three simplifying strategies are adopted: first, simplified nonlinear modeling investigating minimum level of structural modeling sophistication; second, fitness approximation decreasing the number of fitness function evaluations; third, wavelet decomposition of earthquake record decreasing the number of acceleration points involved in time-history loading. The constraints of the optimization problem are considered in accordance with Federal Emergency Management Agency's (FEMA) recommended seismic design specifications. The results from numerical application of the proposed framework demonstrate the efficiency of the framework in solving the present multi-objective optimization problem.