• Title/Summary/Keyword: multi-loading

Search Result 596, Processing Time 0.024 seconds

Static and dynamic stability of cracked multi-storey steel frames

  • Sabuncu, Mustafa;Ozturk, Hasan;Yashar, Ahmed
    • Structural Engineering and Mechanics
    • /
    • v.58 no.1
    • /
    • pp.103-119
    • /
    • 2016
  • Multi-storey frame structures are frequently exposed to static and dynamic forces. Therefore analyses of static (buckling) and dynamic stability come into prominence for these structures. In this study, the effects of number of storey, static and dynamic load parameters, crack depth and crack location on the in-plane static and dynamic stability of cracked multi-storey frame structures subjected to periodic loading have been investigated numerically by using the Finite Element Method. A crack element based on the Euler beam theory is developed by using the principles of fracture mechanics. The equation of motion for the cracked multi-storey frame subjected to periodic loading is achieved by Lagrange's equation. The results obtained from the stability analysis are presented in three dimensional graphs and tables.

Modulus degradation of concrete exposed to compressive fatigue loading: Insights from lab testing

  • Song, Zhengyang;Konietzky, Heinz;Cai, Xin
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.281-296
    • /
    • 2021
  • This article analyzed the modulus degradation of concrete subjected to multi-level compressive cyclic loading. The evolution of secant elastic modulus is investigated based on measurements from top loading platen and LVDT in the middle part of concrete. The difference value of the two secant elastic moduli is reduced when close to failure and could be used as a fatigue failure precursor. The fatigue hardening is observed for concrete during cyclic loading. When the maximum stress is smaller the fatigue hardening is more obvious. The slight increase of maximum stress will lead to the "periodic hardening". The tangent elastic modulus shows a specific "bowknot" shape during cyclic loading, which can characterize the hysteresis of stress-strain and is influenced by the cyclic loading stresses. The deterioration of secant elastic modulus acts a similar role with respect to the P-wave speed during cyclic loading, can both characterize the degradation of the concrete properties.

Life Prediction of Composite Pressure Vessels Using Multi-Scale Approach (멀티 스케일 접근법을 이용한 복합재 압력용기의 수명 예측)

  • Jin, Kyo-Kook;Ha, Sung-Kyu;Kim, Jae-Hyuk;Han, Hoon-Hee;Kim, Seong-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3176-3183
    • /
    • 2010
  • A multi-scale fatigue life prediction methodology of composite pressure vessels subjected to multi-axial loading has been proposed in this paper. The multi-scale approach starts from the constituents, fiber, matrix and interface, leading to predict behavior of ply, laminates and eventually the composite structures. The multi-scale fatigue life prediction methodology is composed of two steps: macro stress analysis and micro mechanics of failure based on fatigue analysis. In the macro stress analysis, multi-axial fatigue loading acting at laminate is determined from finite element analysis of composite pressure vessel, and ply stresses are computed using a classical laminate theory. The micro stresses are calculated in each constituent from ply stresses using a micromechanical model. Three methods are employed in predicting fatigue life of each constituent, i.e. a maximum stress method for fiber, an equivalent stress method for multi-axially loaded matrix, and a critical plane method for the interface. A modified Goodman diagram is used to take into account the generic mean stresses. Damages from each loading cycle are accumulated using Miner's rule. Monte Carlo simulation has been performed to predict the overall fatigue life of a composite pressure vessel considering statistical distribution of material properties of each constituent, fiber volume fraction and manufacturing winding angle.

Creep Behaviour of Red Shale in the Haman Formation by Multi Stage Loading Test (다단계 재하시험에 의한 함안층 적색 셰일의 크리프특성)

  • Cho, Lae-Hun;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.165-175
    • /
    • 2009
  • This study is concerned with creep characteristics of red shale in the Haman Formation by the single stage and multi stage loading tests. Creep constants in the Griggs's experiential equation, ${\epsilon}_t$= a+$b{\cdot}log$ t + $c{\cdot}t$, are determined by regression analysis on the total data obtained. The transition time between the primary and second creep means the time when the differential value of $b{\cdot}log$ t is equal to the differential value of $c{\cdot}t$. The correlation equation between loads (${\sigma}$%) and creep constants is deduced from the three times multi stage loading tests. Also a failure time under each loads is anticipated from creep constants and maximum strain at the failure.

Experimental and Numerical Study on Complex Multi-planar Welded Tubular Joints in Umbrella-Type Space Trusses with Long Overhangs

  • Jiao, Jinfeng;Ma, Xiao;Lei, Honggang;Chen, Y. Frank
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1525-1540
    • /
    • 2018
  • A test rig with multi-functional purposes was specifically designed and manufactured to study the behavior of multi-planar welded tubular joints subjected to multi-planar concurrent axial loading. An experimental investigation was conducted on full-scale welded tubular joints with each consisting of one chord and eight braces under monotonic loading conditions. Two pairs or four representative specimens (two specimens for each joint type) were tested, in which each pair was reinforced with two kinds of different internal stiffeners at the intersections between the chords using welded rectangular hollow steel sections (RHSSs) and the braces using rolled circular hollow steel sections (CHSSs) and welded RHSSs. The effects of different internal stiffeners at the chord-brace intersection on the load capacity of joints under concurrent multi-planar axial compression/tension are discussed. The test results of joint strengths, failure modes, and load-stress curves are presented. Finite element analyses were performed to verify the experimental results. The study results show that the two different joint types with the internal stiffeners at the chord-brace intersection under axial compression/tension significantly increase the corresponding ultimate strength to far exceed the usual design strength. The load carrying capacity of welded tubular joints decreases with a higher degree of the manufacturing imperfection in individual braces at the tubular joints. Furthermore, the interaction effect of the concurrent axial loading applied at the welded tubular joint on member stress is apparent.

Performance validation and application of a mixed force-displacement loading strategy for bi-directional hybrid simulation

  • Wang, Zhen;Tan, Qiyang;Shi, Pengfei;Yang, Ge;Zhu, Siyu;Xu, Guoshan;Wu, Bin;Sun, Jianyun
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.373-390
    • /
    • 2020
  • Hybrid simulation (HS) is a versatile tool for structural performance evaluation under dynamic loads. Although real structural responses are often multiple-directional owing to an eccentric mass/stiffness of the structure and/or excitations not along structural major axes, few HS in this field takes into account structural responses in multiple directions. Multi-directional loading is more challenging than uni-directional loading as there is a nonlinear transformation between actuator and specimen coordinate systems, increasing the difficulty of suppressing loading error. Moreover, redundant actuators may exist in multi-directional hybrid simulations of large-scale structures, which requires the loading strategy to contain ineffective loading of multiple actuators. To address these issues, lately a new strategy was conceived for accurate reproduction of desired displacements in bi-directional hybrid simulations (BHS), which is characterized in two features, i.e., iterative displacement command updating based on the Jacobian matrix considering nonlinear geometric relationships, and force-based control for compensating ineffective forces of redundant actuators. This paper performs performance validation and application of this new mixed loading strategy. In particular, virtual BHS considering linear and nonlinear specimen models, and the diversity of actuator properties were carried out. A validation test was implemented with a steel frame specimen. A real application of this strategy to BHS on a full-scale 2-story frame specimen was performed. Studies showed that this strategy exhibited excellent tracking performance for the measured displacements of the control point and remarkable compensation for ineffective forces of the redundant actuator. This strategy was demonstrated to be capable of accurately and effectively reproducing the desired displacements in large-scale BHS.

Analysis and Evaluation of DBMS Bulk Data Loading Through Multi-tiered Architecture for Heterogeneous Systems (이기종 시스템에서 다층 구조를 통한 DBMS 대용량 데이터 로딩의 분석 및 평가)

  • Tan, Hee-Yuan;Lim, Hyo-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.167-176
    • /
    • 2010
  • Managing the growing number of data generated through various processes requires the aid of Database Management System (DBMS) to efficiently handle the huge amount of data. These data can be inserted into database m real time or in batch, that come from multiple sources, including those that are coming from inside and outside of a network. The insertion of large amount of data is commonly done through specific bulk loading or insertion function supplied by each individual DBMS. In this paper, we analyze and evaluate on handling data bulk loading for heterogeneous systems that is organised as multi-tiered architecture and compare the result of DBMS bulk loader against program insertion from a software development perspective. We propose a hybrid solution using staging database that can be easily deployed for enhancing bulk loading performance compared to insertion by application.

Design and Operation of a Multipath Reservation-Based Remote Crane Control System (다중경로 예약 기반 크레인 원격 운전시스템 설계 및 운용)

  • Choi Dae-Woo;Lho Tae-Jung;Kim Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.9
    • /
    • pp.816-821
    • /
    • 2005
  • The remote operation of $4\~5$ cranes for container loading/unloading at a port by one operator will dramatically improve loading/unloading efficiency through productivity increase, cost reduction, and so on. This study develops a remote crane control system for container loading/unloading yard cranes. First, a wireless video and audio system to transmit views and sounds of the working field is designed by using 3 web cameras and a microphone. Next, a RSVP-based multi-path reservation method is presented with a view to improving the quality of service in the communication network for remote control. Simulation results show that a RSVP-based multi-path reservation can enhance the reservation success rate in the TCP/IP network.

Multi-group Diffusion Analysis on Kori Reactor's Fuel Loading Patterns (고리원자로 핵연료의 장진방법에 대한 다군확산적 효과분석)

  • Chang Kun Lee
    • 전기의세계
    • /
    • v.22 no.1
    • /
    • pp.20-27
    • /
    • 1973
  • The multi-group diffusion theory is applied to the analysis of the currently constructing Kori reactor core which is to be refuelled by 3-region fuel loading pattern and also to the comparative study on a conceptually designed 5-region reactor core, under the condition that, apart from the thermal-hydraulic considerations, all the input data referred to here in are assumed to be identical for both cases. The numerical calculation is carried out for quantitative analysis of the characteristics of the two fuel loading patterns in details, and the calculated results show that, so far as the nuclear aspects are concerned, the characteristics of the 5-region reactor core are proved to be superior to those of Kori's 3-region reactor core in general.

  • PDF

Experimental Study on the Structural Behaviour of Rotary Friction Damper (회전형 복합마찰댐퍼 구조거동에 대한 실험적 연구)

  • Kim, Do-Hyun;Kim, Ji-Young;Kim, Myeong-Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.4
    • /
    • pp.73-80
    • /
    • 2015
  • The new rotary friction damper was developed using several two-nodal rotary frictional components with different clamping forces. Because of these components, the rotary friction damper can be activated by building movements due to lateral forces such as a wind and earthquake. In this paper, various dependency tests such as displacement amplitude, forcing frequency and long term cyclic loading were carried out to evaluate on the structural performance and the multi-slip mechanism of the new damper. Test results show that the multi-slip mechanism is verified and friction coefficients are dependent on displacement amplitute and forcing frequency except long term cyclic loading.