• Title/Summary/Keyword: multi-loading

Search Result 596, Processing Time 0.023 seconds

Material Characteristics of Dental Implant System with In-Vitro Mastication Loading

  • Jeong, Tae-Gon;Jeong, Yong-Hun;Lee, Su-Won;Yang, Jae-Ung;Jeong, Jae-Yeong;Park, Gwang-Min;Gang, Gwan-Su
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.72-72
    • /
    • 2018
  • A dynamic fatigue characteristic of dental implant system has been evaluated with applying single axial compressive shear loading based on the ISO 14801 standard. For the advanced dynamic fatigue test, multi-directional force and motion needed to be accompanied for more information of mechanical properties as based on mastication in oral environment. In this study, we have prepared loading and motion protocol for the multi-directional fatigue test of dental implant system with single (Apical/Occlusal; AO), and additional mastication motion (Lingual/Facial; LF, Mesial/Distal; MD). As following the prepared protocol (with modification of ISO 14801), fatigue test was conducted to verify the worst case results for the development of highly stabilized dental implant system. Mechanical testing was performed using an universal testing machine (MTS Bionix 858, MN, USA) for static compression and single directional loading fatigue, while the multi-directional loading was performed with joint simulator (ADL-Force 5, MA, USA) under load control. Basically, all mechanical test was performed according to the ISO 14801:2016 standard. Static compression test was performed to identify the maximum fracture force with loading speed of 1.0 mm/min. A dynamic fatigue test was performed with 40 % value of maximum fracture force and 5 Hz loading frequency. A single directional fatigue test was performed with only apical/occlusal (AO) force application, while multi directional fatigue tests were applied $2^{\circ}$ of facial/lingual (FL) or mesial/distal (MD) movement. Fatigue failure cycles were entirely different between applying single-directional loading and multi-directional loading. As a comparison of these loading factor, the failure cycle was around 5 times lower than single-directional loading while applied multi-directional loading. Also, the displacement change with accumulated multi-directional fatigue cycles was higher than that of single directional cycles.

  • PDF

Random loading identification of multi-input-multi-output structure

  • Zhi, Hao;Lin, Jiahao
    • Structural Engineering and Mechanics
    • /
    • v.10 no.4
    • /
    • pp.359-369
    • /
    • 2000
  • Random loading identification has long been a difficult problem for Multi-Input-Multi-Output (MIMO) structure. In this paper, the Pseudo Excitation Method (PEM), which is an exact and efficient method for computing the structural random response, is extended inversely to identify the excitation power spectral densities (PSD). This identified method, named the Inverse Pseudo Excitation Method (IPEM), resembles the general dynamic loading identification in the frequency domain, and can be used to identify the definite or random excitations of complex structures in a similar way. Numerical simulations are used to reveal the the difficulties in such problems, and the results of some numerical analysis are discussed, which may be very useful in the setting up and processing of experimental data so as to obtain reasonable predictions of the input loading from the selected structural responses.

Fatigue life estimation using the multi-axial multi-point Load Counting method under Variable Amplitude Loading (가변진폭하중에서 다축-다점 하중 Counting method를 이용한 피로수명평가)

  • 이원석;이현우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.913-920
    • /
    • 1996
  • In this study, the counting method for multi-axial and multi-point load states was proposed. Using this counting method, the load spectrum is generated from the service load history which is measured for boom structure of excavator. Loading state for loading points of boom structure is described as a multi-dimensional state space. From this load spectrum, the stress spectrum was generated by FEM analysis using the superposition of the unit load. The cumulated damage at the severe damage point of In nm structure by the failure example is calculated by Palmgren-Miner's rule. As a result of this study, the fatigue life estimation using the multi-axial and multi-point load counting method is useful.

  • PDF

A Study on Measuring the Coefficient of Earth Pressure at Rest II (정지토압계수 측정에 관한 연구 II)

  • SONG MU-HYO
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.58-69
    • /
    • 2004
  • In order to investigate the characteristics of the lateral earth pressure at rest, under hysteretic $K_o-loading/unloading$ conditions, seven types of multi-cyclic models have been studied, using dry sand. For this study, the new type of $K_o-oedometer$ apparatus was developed, and the horizontal pressure was accurately measured. The multi-cyclic models consist of primarily 3 cases: (i) $K_o-test$ under the same loading / unloading condition, (ii) multi-cyclic loading / unloading $K_o-test$ exceeding the maximum pre-vertical stress, and (iii) multi-cyclic loading / unloading $K_o-test$ within the maximum pre-vertical stress. Results fromthe multi-cyclic model indicated that a single-cyclic model could be extended if the exponents for the unloading condition $(\alpha\;and\;\alpha^*)$ and the reloading coefficients $(m_r,\;and\;m_r^{\ast})$ were primarily dependent upon the type of model, number of cycles, and the relative density.

Procedures of Biaxial Seismic Capacity Test and Seismic Performance Evaluation (수평이축방향 내진역량시험과 내진성능평가 절차)

  • 김재관;김익현;이재호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.453-460
    • /
    • 2001
  • The seismic capacity of columns usually has been tested in uniaxial loading condition. The seismic performance used to be evaluated under the same assumption. Since the real earthquake motion is multi-directional, the effects of multi-directional excitation on the seismic capacity of structures need to be carefully examined. In this paper, a frequency dependent alternate biaxial cyclic loading test is proposed as an evaluation method of seismic capacity under multi-directional excitation. Four test specimens were made and tested to study the degradation of strength, stiffness and ductility under biaxial loading condition. A multi- directional excitation. The capacity is obtained using frequency dependent alternate biaxial cyclic loading test. The orthogonal effect is taken into account by increasing the demand.

  • PDF

Bi-Axial Alternate Cyclic Loading Test of Rectangular Reinforced Concrete Columns (이축방향 교번반복하중을 받는 구형 철근콘크리트교각의 거동특성 시험)

  • 김재관;김익현;이재호;김남식
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.323-328
    • /
    • 2001
  • The behavior of bridge column under multi-directional loading as well as uni-directional loading need to be studied because bridge columns will be subjected to the multi-directional cyclic loading during a strong earthquake. To evaluate the capacity of columns, uni-axial cyclic loading tests and bi-axial alternate cyclic loading tests were carried out. The number of cycles of alternate bi-axial loading were determined considering the ratio of natural frequencies in two orthogonal directions. From the test results, strength degradation and ductility reduction were observed in biaxial loading conditions. Their rates were found to be more rapid in the loading pattern that was determined considering the different natural frequencies.

  • PDF

Behaviour of Dry Sand under $K_o$-Loading / Unloading Conditions(II) : Hysteretic Test ($K_o$-재하/제하에 의한 건조모래의 거동(II): 다주기 시험)

  • 정성교;정진교
    • Geotechnical Engineering
    • /
    • v.11 no.1
    • /
    • pp.23-40
    • /
    • 1995
  • In order to investigate the characteristics of the lateral earth pressure at rest under hysteretic Ko -loading l unloading conditions. Seven types of multicyclic models have been studied experimentally using dry sand. For this study a new type of Ko -oedometer appal attn is developed, and horizontal pressure is accurately measured. The multi cyclic models consist of largely 3 cases : (i) Ko-test under the same loading/unloading condition, (ii) multi-cyclic loading /unloading Ko -test exceeding the maximum prevertical stress, and (iii) multi-cyclic loading l unloading Ko -test within the mazimium prevertical stress. As a result, the multi -cyclic model showed that single-cyclic model could be extended as well, in which the exponents for unloading condition(a and a') and the reloading coefficients(m, and m*) were mainily dependent upon type of stress model, number of cycles and relati ve density.

  • PDF

Stress concentration factors for multi-planar tubular KK-joints of jacket substructures in offshore wind turbines

  • Hamid Ahmadi;Adel Alizadeh Atalo
    • Ocean Systems Engineering
    • /
    • v.14 no.3
    • /
    • pp.237-259
    • /
    • 2024
  • Although the investigation on the effect of loaded out-of-plane braces on the values of the stress concentration factor (SCF) in offshore tubular joints has been the objective of numerous research works, a number of quite important cases still exist that have not been studied thoroughly due to the diversity of joint types and loading conditions. One of these cases is the multi-planar tubular KK-joint subjected to axial loading. Tubular KK-joints are among the most common joint types in jacket substructure of offshore wind turbines (OWTs). In the present research, data extracted from the stress analysis of 243 finite element (FE) models, verified against available experimental data, was used to study the effects of geometrical parameters on the chord-side SCFs in multi-planar tubular KK-joints subjected to axial loading. Parametric FE study was followed by a set of nonlinear regression analyses to develop three new SCF parametric equations for the fatigue analysis and design of axially loaded multi-planar KK-joints.

Effect of Fiber Volume Fraction on the Stress Intensity Factors for Multi Layered Composites Under Arbitrary Anti-Plane Shear Loading

  • Kim, Sung-Ho;Lee, Kang-Yong;Joo, Sung-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.920-927
    • /
    • 2000
  • A multi-layered orthotropic material with a center crack is subjected to an anti-plane shear loading. The problem is formulated as a mixed boundary value problem by using the Fourier integral transform method. This gives a Fredholm integral equation of the second kind. The integral equation is solved numerically and anti-plane shear stress intensity factors are analyzed in terms of the material orthotropy for each layer, number of layers, crack length to layer thickness and the order of the loading polynomial. Also, the case of monolithic and hybrid composites are investigated in terms of the local fiber volume fraction and the global fiber volume fraction.

  • PDF

A Multi-level Symbiotic Evolutionary Algorithm for FMS Loading Problems with Various Flexibilities (다양한 유연성을 갖는 FMS 부하할당 문제를 위한 다계층 공생 진화 알고리듬)

  • Kim, Yeo Keun;Kim, Jae Yun;Lee, Won Kyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.1
    • /
    • pp.65-77
    • /
    • 2003
  • This paper addresses FMS(Flexible Manufacturing System) loading problems with machine, tool and process flexibilities. When designing FMS planning, it is important to take account of these flexibilities for an efficient utilization of the resources. However, almost all the existing researches do not appropriately consider various flexibilities due to the problem complexity. This paper presents a new evolutionary algorithm to solve the FMS loading problems with machine, tool and process flexibilities. The algorithm is named a multi-level symbiotic evolutionary algorithm. The proposed algorithm is compared with the existing ones in terms of solution quality and convergence speed. The experimental results confirm the effectiveness of our approach.