• 제목/요약/키워드: multi-layered soil

검색결과 104건 처리시간 0.028초

Numerical analysis of non-uniform segmental lining design effects on large-diameter tunnels in complex multi-layered strata

  • Joohyun Park;Seok-Jun Kang;Jun-Beom An;Gye-Chun Cho
    • Geomechanics and Engineering
    • /
    • 제38권6호
    • /
    • pp.553-569
    • /
    • 2024
  • In recent tunneling projects, encounters with multi-layered strata have become more frequent as the desired scale of tunneling increases. Despite substantial practical experience, the design of large-diameter shield-driven tunnels often simplifies the surrounding ground as uniform, overlooking the complexities introduced by non-uniform geotechnical factors. This study comparatively analyzed the influence of design factors, particularly segment stiffness and joint parameters, on segmental lining behavior in layered ground conditions using numerical methods. A comprehensive parametric study revealed the significant impact of deformative interaction between the lining and the soft top soil layer on overall tunnel behavior. Permitting lining deformation in the soft soil layer effectively mitigated the induced internal forces but resulted in considerable tunnel lining convergence, adopting a peanut-shaped appearance. From a practical design perspective, application of a soft segment with lower stiffness near the stiff soil layer is an economically advantageous approach, alleviating internal forces within an acceptable convergence level. Notably, around the interfaces between soil layers with different stiffnesses, the induced internal forces in the lining were minimized based on joint rotational stiffness and location. This indicates the possibility of achieving an optimal design for segmental lining joints under layered ground conditions. Additionally, a preliminary design method was proposed, which sequentially optimizes parameters for joints located near soil layer interfaces. Subsequently, a specialized design based on the proposed method for complex multi-layered strata was compared with a conventional design. The results confirmed that the internal force was effectively relieved at an allowable lining deflection level.

Analysis of Offshore Wind Tower against Impulsive Breaking Wave Force by P-Y Curve

  • Kim, Nam-Hyeong;Koh, Myung-Jin
    • 한국항해항만학회지
    • /
    • 제39권5호
    • /
    • pp.385-391
    • /
    • 2015
  • In offshore, various external forces such as wind force, tidal current and impulsive breaking wave force act on offshore wind tower. Among these forces, impulsive breaking wave force is especially more powerful than other forces. Therefore, various studies on impulsive breaking wave forces have been carried out, but the soil reaction are incomplete. In this study, the p-y curve is used to calculate the soil reaction acting on the offshore wind tower when an impulsive breaking wave force occurs by typhoon. The calculation of offshore wind tower against impulsive breaking wave force is applied for the multi-layered soil. The results obtained in this study show that although the same wave height is applied, the soil reaction generated by impulsive breaking wave force is greater than the soil reaction generated by wave force.

접합면 스프링요소를 고려한 단말뚝-지반 상호작용계의 수직진동해석 (Vertical Vibration Analysis of Single Pile-Soil Interaction System Considering the Interface Spring)

  • 김민규;김문겸;이종세
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.106-113
    • /
    • 2002
  • In this study, a numerical analysis method for soil-pile interaction in frequency domain problem is presented. The total soil-pile interaction system is divided into two parts so called near field and far field. In the near field, beam elements are used for a pile and plain strain finite elements for soil. In the far field, dynamic fundamental solution for multi-layered half planes based on boundary element formulation is adopted for soil. These two fields are coupled using FE-BE coupling technique In order to verify the proposed soil-pile interaction analysis, the dynamic responses of pile on multi-layered half planes are simulated and the results are compared with the experimental results. Also, the dynamic response analyses of interface spring elements are performed. As a result, less spring stiffness makes the natural frequency decrease and the resonant amplitude increase.

  • PDF

Capillary Characteristics of Water and Cations in Multi-layered Reclaimed Soil with Macroporous Subsurface Layer Utilizing Coal Bottom Ash

  • Ryu, Jin-Hee;Chung, Doug-Young;Ha, Sang-Keon;Lee, Sang-Bok;Kim, Si-Ju;Kim, Min-Tae;Park, Ki-Do;Kang, Hang-Won
    • 한국토양비료학회지
    • /
    • 제47권6호
    • /
    • pp.406-411
    • /
    • 2014
  • Serious problems in reclaimed land agriculture are high soil salinity and poor vertical drainage, so desalinization in these soils is very difficult. Also, although desalinization is accomplished in reclaimed top soils, before long, soils are resalinized according to capillary rise of salts from the subsurface soils. To resolve these problems, multi-layered soil columns with subsurface layer of macroporous medium utilizing coal bottom ash (CBA) were constructed and the effects of blocked resalinization of these soils were investigated. In this experiment soil samples were collected from Munpo series (coarse-loamy, nonacid, mixed, mesic, typic Fluvaquents). The soil texture was silt loam and the EC was $33.9dS\;m^{-1}$. As for groundwater seawater was used and groundwater level of 1 cm from the bottom was maintained. The overall rate of capillary rise was $2.38cm\;hr^{-1}$ in soil 60 cm column, $0.25cm\;hr^{-1}$ in topsoil (30 cm) + CBA (5 cm) + subsurface soil (10 cm) column and $0.08cm\;hr^{-1}$ in topsoil (30 cm) + CBA (10 cm) + subsurface soil (10 cm) column. In multi-layered soil columns with CBA 20, 30 cm layer, wetting front due to capillary rise could not be seen in top soil layer. After 70 days capillary rise experiment water soluble Na+ accumulated in top soil of soil columns with CBA 20, 30 cm was diminished by 92.8, 96.5% respectively in comparison with Na+ accumulated in top soil of soil 60 cm column because CBA layer cut off capillary rise of salts from the subsurface soil. From these results we could conclude that the macroporous layer utilizing CBA placed at subsurface layer cut off capillary rise of solutes from subsurface soil, resulting in lowered level of salinity in top soil and this method can be more effective in newly reclaimed saline soil.

수치해석에 의한 다층토 압밀의 경계요소면 해석 (Layer Interface Analysis of Multi-Layered Soils by Numerical Methods)

  • 김팔규;류권일;구기욱;남상규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.349-356
    • /
    • 1999
  • In general, the term soft ground includes clayey soils, which have large compressibility and small shear resistance due to the external load. All process of consolidation in compressible soils can be explained in terms of a transfer of load from an incompressible pore-water to a compressible soil structure. Therefore, one of the most important subjects about the characteristics of the time-dependent consolidation of the clay foundation by the change of load may be the presumption of the final settlement caused by consolidation and the degree of consolidation according to the time. The problems of discontinuous layer interface are very important in the algorithm and programming for the analysis of multi-layered soils using a numerical analysis, finite difference method. Better results can be obtained by the Process for discontinuous layer interface, since it can help consolidation analysis to model the actual ground. The purpose of this paper Provides an efficient computer algorithm based on numerical analysis using finite difference method(F.D.M.) which account for multi-layered soils to determine the degree of consolidation and excess pore pressures relative to time and positions more realistically.

  • PDF

다층지반에 근입된 흙막이 벽의 역해석에 관한 연구 (Back Analysis of the Earth Wall in Multi-layered Subgrade)

  • 이승훈;김종민;김수일;장범수
    • 한국지반공학회논문집
    • /
    • 제18권1호
    • /
    • pp.71-78
    • /
    • 2002
  • 본 연구에서는 다층지반에 근입된 흙막이 벽의 단계별 계측변위로부터 각 층의 지반물성을 추정하고 이로부터 차기단계의 거동을 예측하기 위한 역해석 기법을 제안하였다. 지반이 다수의 층으로 구성되어 있을 경우 찾아야 할 대상변수가 많아지게 되며, 대상변수가 많아질수록 역해석에 상당한 무리가 따르게 된다. 이러한 층별 지반물성을 효율적으로 추정하기 위하여 최하단층부터 순차적으로 대상변수들을 찾아가는 방법을 이용하였다. 역해석은 상당량의 반복계산이 필요하기 때문에 정해석 방법으로는 해석시간이 짧고 시공단계 별 해석이 가능한 탄소성보법을 사용하였다. 역해석 대상변수는 탄소성 하중-변위 곡선의 구성요소인 지반반력계수와 수평토압계수들을 취하였으며, 목적함수는 이상변위에 의한 오차를 최소화시키기 위하여 단계별 계측변위 증분과 해석변위 증분의 차이로 구성하였다. 목적함수를 최소화 시키는 대상변수들을 찾기 위한 최적화 수법으로는 제약순차선형계획 법을 이용하였다. 본 연구를 통하여 제안된 방법을 수치해석자료 및 현장계측자료를 이용하여 검증하였다.

다층지반 하에서 수평하중을 받는 말뚝의 회전점 (Rotation Point of Laterally Loaded Pile Under Multi Layered Soil)

  • 강병준;경두현;홍정무;이준환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.708-712
    • /
    • 2008
  • Piles and pile foundations have been in common use since very early times. Usually function of piles is to carry load to a depth at which adequate support is available. Another important use of piles is to furnish lateral support and nowadays it is getting highlighted due to the wind load, lateral action of earthquake, and so on. After Broms (1964), many researchers have been suggested methods for estimating lateral capacity of pile. But each method assumes different earth pressure distribution and lateral earth pressure coefficient and it gives confusion to pile designers. Lateral earth pressure, essential in lateral capacity estimation, influenced by pile's behavior under lateral load. Prasad and Chari (1999) assumed the rotation point of pile and suggested an equation of ultimate lateral load capacity. In this study, we investigate the depth of rotation point in both homogeneous soil and multi layered soil, and compare to the estimation value by previous research. To model the pile set up in the sand, we use the chamber and small scale steel pile, and rain drop method. Test results show the rotation point is formed where the Prasad and Chari's estimation value, and they also show multi layered condition affects to location of rotation point to be scattered.

  • PDF

다층 지반의 2차원 압밀 수치해석 II (2-D Consolidation Numerical Analysis of Multi_Layered Soils (II))

  • 류권일;김팔규;구기욱;남상규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.665-672
    • /
    • 2000
  • The problems of discontinuous layer interface are very important in the algorithm and programming for the analysis of multi-layered consolidation using a numerical analysis, finite difference method(F.D,M.). Better results can be obtained by the process for discontinuous layer interface, since it can help consolidation analysis to model the actual ground Explicit method is simple for analysis algorithm and convenient for use except for applying the operator Crank-Nicolson method represents implicit method, which have different analysis method according to weighting factor. This method uses different algorithm according to dimension. And, this paper uses alternative direction implicit method. The purpose of this paper provides an efficient computer algorithm based on numerical analysis using finite difference method which account for multi-layered soils with confined aquifer to determine the degree of consolidation and excess pore pressures relative to time and positions more realistically.

  • PDF

Behavior of a combined piled raft foundation in a multi-layered soil subjected to vertical loading

  • Bandyopadhyay, Srijit;Sengupta, Aniruddha;Parulekar, Y.M.
    • Geomechanics and Engineering
    • /
    • 제21권4호
    • /
    • pp.379-390
    • /
    • 2020
  • The behavior of a piled raft system in multi-layered soil subjected to vertical loading has been studied numerically using 3D finite element analysis. Initially, the 3D finite element model has been validated by analytically simulating the field experiments conducted on vertically loaded instrumented piled raft. Subsequently, a comprehensive parametric study has been conducted to assess the performance of a combined piled raft system in terms of optimum pile spacing and settlement of raft and piles, in multi-layered soil stratum subjected to vertical loading. It has been found that a combined pile raft system can significantly reduce the total settlement as well as the differential settlement of the raft in comparison to the raft alone. Two different arrangements below the piled raft with the same pile numbers show a significant amount of increase of load transfer of piled raft system, which is in line with the load transfer mechanism of a piled raft. A methodology for the factor of safety assessment of a combined pile raft foundation has been presented to improve the performance of piled raft based on its serviceability requirements. The findings of this study could be used as guidelines for achieving economical design for combined piled raft systems.

Penetration Behavior of Jack-up Leg with Spudcan for Offshore Wind Turbine to Multi-layered Soils Using Centrifuge Tests

  • Min Jy Lee;Yun Wook Choo
    • 한국해양공학회지
    • /
    • 제38권1호
    • /
    • pp.30-42
    • /
    • 2024
  • This study examined the jack-up spudcan penetration for a new type of offshore wind substructure newly proposed using the jack-up concept to reduce construction costs. The jack-up spudcan for offshore wind turbines should be designed to penetrate a stable soil layer capable of supporting operational loads. This study evaluated multi-layered soil conditions using centrifuge tests: loose sand over clay and loose sand-clay-dense sand. The penetration resistance profiles of spudcan recorded at the centrifuge tests were compared with the ISO and InSafeJIP methods. In the tests, a spudcan punch-through effect slightly emerged under the sand-over-clay condition, and a spudcan squeezing effect occurred in the clay-over-sand layer. On the other hand, these two effects were not critically predicted using the ISO method, and the InSafeJIP result predicted only punch-through failure. Nevertheless, ISO and InSafeJIP methods were well-matched under the conditions of the clay layer beneath the sand and the penetration resistance profiles at the clay layer of centrifuge tests. Therefore, the ISO and InSafeJIP methods well predict the punch-through effect at the clay layer but have limitations for penetration resistance predictions at shallow depths and strong stratum soil below a weak layer.