• Title/Summary/Keyword: multi-hop relay networks

Search Result 75, Processing Time 0.026 seconds

A Cluster-Based Relay Station Deployment Scheme for Multi-Hop Relay Networks

  • Chang, Jau-Yang;Chen, Yun-Wei
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.84-92
    • /
    • 2015
  • Multi-hop relay networks have been widely considered as a promising solution to extend the coverage area and to reduce the deployment cost by deploying the relay stations (RSs) in mobile communication systems. Suitable deployment for the RSs is one of the most important features of the demand nodes (DNs) to obtain a high data transmission rate in such systems. Considering a tradeoff among the network throughput, the deployment budget, and the overall coverage of the systems, efficient RS deployment schemes and corresponding algorithms must be developed and designed. A novel cluster-based RS deployment scheme is proposed in this paper to select the appropriate deployment locations for the relay stations from the candidate positions. To make an ideal cluster distribution, the distances between the DNs are calculated when deploying the RSs. We take into account the traffic demands and adopt a uniform cluster concept to reduce the data transmission distances of the DNs. On the basis of the different candidate positions, the proposed scheme makes an adaptive decision for selecting the deployment sites of the RSs. A better network throughput and coverage ratio can be obtained by balancing the network load among the clusters. Simulation results show that the proposed scheme outperforms the previously known schemes in terms of the network throughput and the coverage ratio. Additionally, a suitable deployment budget can be implemented in multi-hop relay networks.

Secure Connectivity Probability of Multi-hop Clustered Randomize-and-Forward Networks

  • Wang, Xiaowei;Su, Zhou;Wang, Guangyi
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.729-736
    • /
    • 2017
  • This work investigates secure cluster-aided multi-hop randomize-and-forward networks. We present a hop-by-hop multi-hop transmission scheme with relay selection, which evaluates for each cluster the relays that can securely receive the message. We propose an analytical model to derive the secure connectivity probability (SCP) of the hop-by-hop transmission scheme. For comparison, we also analyze SCPs of traditional end-to-end transmission schemes with two relay-selection policies. We perform simulations, and our analytical results verify that the proposed hop-by-hop scheme is superior to end-to-end schemes, especially with a large number of hops or high eavesdropper channel quality. Numerical results also show that the proposed hop-by-hop scheme achieves near-optimal performance in terms of the SCP.

Mobile-Based Relay Selection Schemes for Multi-Hop Cellular Networks

  • Zhang, Hao;Hong, Peilin;Xue, Kaiping
    • Journal of Communications and Networks
    • /
    • v.15 no.1
    • /
    • pp.45-53
    • /
    • 2013
  • Multi-hop cellular networks (MCNs), which reduce the transmit power, mitigate the inter-cell interference, and improve the system performance, have been widely studied nowadays. The relay selection scheme is a key technique that achieves these advantages, and inappropriate relay selection causes frequent relay switchings, which deteriorates the overall performance. In this study, we analyze the conditions for relay switching in MCNs and obtain the expressions for the relay switching rate and relay activation time. Two mobile-based relay selection schemes are proposed on the basis of this analysis. These schemes select the relay node with the longest relay activation time and minimal relay switching rate through mobility prediction of the mobile node requiring relay and available relay nodes. We compare the system performances via simulation and analyze the impact of various parameters on the system performance. The results show that the two proposed schemes can obtain a lower relay switching rate and longer relay activation time when there is no reduction in the system throughput as compared with the existing schemes.

Spectrum Sharing-Based Multi-Hop Decode-and-Forward Relay Networks under Interference Constraints: Performance Analysis and Relay Position Optimization

  • Bao, Vo Nguyen Quoc;Thanh, Tran Thien;Nguyen, Tuan Duc;Vu, Thanh Dinh
    • Journal of Communications and Networks
    • /
    • v.15 no.3
    • /
    • pp.266-275
    • /
    • 2013
  • The exact closed-form expressions for outage probability and bit error rate of spectrum sharing-based multi-hop decode-and-forward (DF) relay networks in non-identical Rayleigh fading channels are derived. We also provide the approximate closed-form expression for the system ergodic capacity. Utilizing these tractable analytical formulas, we can study the impact of key network parameters on the performance of cognitive multi-hop relay networks under interference constraints. Using a linear network model, we derive an optimum relay position scheme by numerically solving an optimization problem of balancing average signal-to-noise ratio (SNR) of each hop. The numerical results show that the optimal scheme leads to SNR performance gains of more than 1 dB. All the analytical expressions are verified by Monte-Carlo simulations confirming the advantage of multihop DF relaying networks in cognitive environments.

A Bandwidth Adaptive Path Selection Scheme in IEEE 802.16 Relay Networks

  • Lee, Sung-Hee;Ko, Young-Bae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.3
    • /
    • pp.477-493
    • /
    • 2011
  • The IEEE 802.16 mobile multi-hop relay (MMR) task group 'j' (TGj) has introduced the multi-hop relaying concept in the IEEE 802.16 Wireless MAN, wherein a relay station (RS) is employed to improve network coverage and capacity. Several RSs can be deployed between a base station and mobile stations, and configured to form a tree-like multi-hop topology. In such architecture, we consider the problem of a path selection through which the mobile station in and outside the coverage can communicate with the base station. In this paper, we propose a new path selection algorithm that ensures more efficient distribution of resources such as bandwidth among the relaying nodes for improving the overall performance of the network. Performance of our proposed scheme is compared with the path selection algorithms based on loss rate and the shortest path algorithm. Based on the simulation results using ns-2, we show our proposal significantly improves the performance on throughput, latency and bandwidth consumption.

Dual-Hop Amplify-and-Forward Multi-Relay Maximum Ratio Transmission

  • Erdogan, Eylem;Gucluoglu, Tansal
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • In this paper, the performance of dual-hop multi-relay maximum ratio transmission (MRT) over Rayleigh flat fading channels is studied with both conventional (all relays participate the transmission) and opportunistic (best relay is selected to maximize the received signal-to-noise ratio (SNR)) relaying. Performance analysis starts with the derivation of the probability density function, cumulative distribution function and moment generating function of the SNR. Then, both approximate and asymptotic expressions of symbol error rate (SER) and outage probability are derived for arbitrary numbers of antennas and relays. With the help of asymptotic SER and outage probability, diversity and array gains are obtained. In addition, impact of imperfect channel estimations is investigated and optimum power allocation factors for source and relay are calculated. Our analytical findings are validated by numerical examples which indicate that multi-relay MRT can be a low complexity and reliable option in cooperative networks.

Throughput-efficient Online Relay Selection for Dual-hop Cooperative Networks

  • Lin, Yuan;Li, Bowen;Yin, Hao;He, Yuanzhi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2095-2110
    • /
    • 2015
  • This paper presents a design for a throughput-efficient online relay selection scheme for dual-hop multi-relay cooperative networks. Problems arise with these networks due to unpredictability of the relaying link quality and high time-consumption to probe the dual-hop link. In this paper, we firstly propose a novel probing and relaying protocol, which greatly reduces the overhead of the dual-hop link estimation by leveraging the wireless broadcasting nature of the network. We then formulate an opportunistic relay selection process for the online decision-making, which uses a tradeoff between obtaining more link information to establish better cooperative relaying and minimizing the time cost for dual-hop link estimation to achieve higher throughput. Dynamic programming is used to construct the throughput-optimal control policy for a typically heterogeneous Rayleigh fading environment, and determines which relay to probe and when to transmit the data. Additionally, we extend the main results to mixed Rayleigh/Rician link scenarios, i.e., where one side of the relaying link experiences Rayleigh fading while the other has Rician distribution. Numerical results validate the effectiveness and superiority of our proposed relaying scheme, e.g., it achieves at least 107% throughput gain compared with the state of the art solution.

A Novel Social Aware Reverse Relay Selection Scheme for Underlaying Multi- Hop D2D Communications

  • Liang Li;Xinjie Yang;Yuanjie Zheng;Jiazhi Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2732-2749
    • /
    • 2023
  • Device-to-Device (D2D) communication has received increasing attention and been studied extensively thanks to its advantages in improving spectral efficiency and energy efficiency of cellular networks. This paper proposes a novel relay selection algorithm for multi-hop full-duplex D2D communications underlaying cellular networks. By selecting the relay of each hop in a reverse manner, the proposed algorithm reduces the heavy signaling overhead that traditional relay selection algorithms introduce. In addition, the social domain information of mobile terminals is taken into consideration and its influence on the performance of D2D communications studied, which is found significant enough not to be overlooked. Moreover, simulations show that the proposed algorithm, in absence of social relationship information, improves data throughput by around 70% and 7% and energy efficiency by 64% and 6%, compared with two benchmark algorithms, when D2D distance is 260 meters. In a more practical implementation considering social relationship information, although the proposed algorithm naturally achieves less throughput, it substantially increases the energy efficiency than the benchmarks.

Cooperative Beamformer Design for Improving Physical Layer Security in Multi-Hop Decode-and-Forward Relay Networks

  • Lee, Han-Byul;Lee, Jong-Ho;Kim, Seong-Cheol
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.187-199
    • /
    • 2016
  • In this paper, we consider secure communications in multi-hop relaying systems, where multiple decode-and-forward (DF) relays are located at each individual hop and perform cooperative beamforming to improve physical layer security. In order to determine the cooperative relay beamformer at each hop, we propose an iterative beamformer update scheme using semidefinite relaxation and bisection techniques. Numerical results are presented to verify the secrecy rate performance of the proposed scheme.

Security-reliability Analysis for a Cognitive Multi-hop Protocol in Cluster Networks with Hardware Imperfections

  • Tin, Phu Tran;Nam, Pham Minh;Duy, Tran Trung;Voznak, Miroslav
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.3
    • /
    • pp.200-209
    • /
    • 2017
  • In this paper, we investigate the tradeoff between security and reliability for a multi-hop protocol in cluster-based underlay cognitive radio networks. In the proposed protocol, a secondary source communicates with a secondary destination via the multi-hop relay method in the presence of a secondary eavesdropper. To enhance system performance under the joint impact of interference constraint required by multiple primary users and hardware impairments, the best relay node is selected at each hop to relay the source data to the destination. Moreover, the destination is equipped with multiple antennas and employs a selection combining (SC) technique to combine the received data. We derive closed-form expressions of the intercept probability (IP) for the eavesdropping links and the outage probability (OP) for the data links over a Rayleigh fading channel. Finally, the correction of our derivations is verified by Monte-Carlo simulations.