• Title/Summary/Keyword: multi-hop communications

Search Result 243, Processing Time 0.019 seconds

A Design of TNA(Traceback against Network Attacks) Based on Multihop Clustering using the depth of Tree structure on Ad-hoc Networks (애드혹 네트워크 상에 트리구조 깊이를 이용한 다중홉 클러스터링 기반 TNA(Traceback against Network Attacks) 설계)

  • Kim, Ju-Yung;Lee, Byung-Kwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.9
    • /
    • pp.772-779
    • /
    • 2012
  • In the current MANET, DOS or DDOS attacks are increasing, but as MANET has limited bandwidth, computational resources and battery power, the existing traceback mechanisms can not be applied to it. Therefore, in case of traceback techniques being applied to MANET, the resource of each node must be used efficiently. However, in the traceback techniques applied to an existing ad hoc network, as a cluster head which represents all nodes in the cluster area manages the traceback, the overhead of the cluster head shortens each node's life. In addition, in case of multi-hop clustering, as one Cluster head manages more node than one, its problem is getting even worse. This paper proposes TNA(Traceback against Network Attacks) based on multihop clustering using the depth of tree structure in order to reduce the overhead of distributed information management.

A Reliable Transmission and Buffer Management Techniques of Event-driven Data in Wireless Sensor Networks (센서 네트워크에서 Event-driven 데이터의 신뢰성 있는 전송 및 버퍼 관리 기법)

  • Kim, Dae-Young;Cho, Jin-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6B
    • /
    • pp.867-874
    • /
    • 2010
  • Since high packet losses occur in multi-hop transmission of wireless sensor networks, reliable data transmission is required. Especially, in case of event-driven data, a loss recovery mechanism should be provided for lost packets. Because retransmission for lost packets is requested to a node that caches the packets, the caching node should maintains all of data for transmission in its buffer. However, nodes of wireless sensor networks have limited resources. Thus, both a loss recovery mechanism and a buffer management technique are provided for reliable data transmission in wireless sensor networks. In this paper, we propose a buffer management technique at a caching position determined by a loss recovery mechanism. The caching position of data is determined according to desirable reliability for the data. In addition, we validate the performance of the proposed method through computer simulations.

Operating μTESLA based on Variable Key-Slot in Multi-Hop Unattended WSN (멀티 홉 Unattended WSN에서 가변 키 슬롯 기반 μTESLA의 운영)

  • Choi, JinChun;Kang, Jeonil;Nyang, DaeHun;Lee, KyungHee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.3
    • /
    • pp.223-233
    • /
    • 2014
  • As a broadcast message authentication method in wireless sensor networks, ${\mu}$TESLA enables sensor nodes efficiently authenticate message from base station (BS). However, if we use ${\mu}$TESLA that has very short length of key slot in unattended wireless sensor network (UWSN), sensors may calculate a huge amount of hashs at once in order to verify the revealed secret key. In contrast, if we set the length of ${\mu}$TESLA's key slot too long in order to reduce the amount of hashs to calculate, BS should wait out the long slot time to release key. In this paper, we suggest variable key slot ${\mu}$TESLA in order to mitigate the problem. As showing experiment results, we prove that our suggestion improve sensor node's response time and decrease of number of hash function calculation.

A Back-Pressure Algorithm for Lifetime Extension of the Wireless Sensor Networks with Multi-Level Energy Thresholds (센서네트워크 수명 연장을 위한 에너지 임계값 기반 다단계 Back-Pressure 알고리즘)

  • Jeong, Dae-In
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12B
    • /
    • pp.1083-1096
    • /
    • 2008
  • This paper proposes an energy-aware path management scheme, so-called the TBP(Threshold based Back-Pressure) algorithm, which is designed for lifetime extension of the energy-constrained wireless sensor networks. With the goal of fair energy consumptions, we extensively utilize the available paths between the source and the sink nodes. The traffic distribution feature of the TBP algorithm operates in two scales; the local and the whole routing area. The threshold and the back-pressure signal are introduced for implementing those operations. It is noticeable that the TBP algorithm maintains the scalability by defining both the threshold and the back-pressure signal to have their meanings locally confined to one hop only. Throughout several experiments, we observe that the TBP algorithm enhances the network-wide energy distribution. which implies the extension of the network lifetime. Additionally, both the delay and the throughput outcomes show remarkable improvements. This shows that the energy-aware path control scheme holds the effects of the congestion control.

Performance analysis of ZRP supporting QoS for Mobile Ad hoc networks (MANET에 대해 QoS를 지원하는 ZRP의 성능연구)

  • Kwon, Oh-Seong;Jeong, Eui-Hyun;Kim, Jun-Nyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3B
    • /
    • pp.224-236
    • /
    • 2003
  • MANET(Mobile Ad hoc networks) is a mobile, multi-hop, and wireless network which is bandwidth constrained, energy constrained, resource constrained, autonomous, and self operating systems with dynamic topology. These constraints make the routing between communicating nodes in ad hoc networks difficult. In this paper we survey several routing protocol for mobile ad hoc networks. Especially, we focus on Zone Routing Protocol, hybrid routing framework suitable for a wide of mobile ad hoc networks and analyze performance of ZRP. In the case of ZRP protocol, it is essential that the use of optimal zone radius for efficient use. Otherwise it was proved through an simulation that performance of whole network is rapidly decrease with greatly increasing overhead of ZRP traffic that need for transmission of packet by IARP or IERP traffic. Also we suggest the process of finding QoS path that use in-band signal for QoS routing in ad hoc network. This method guarantees route that make real time multimedia service for QoS enabled path.

A Method to Support Mobile Sink Node in a Hierarchical Routing Protocol of Wireless Sensor Networks (무선 센서 네트워크를 위한 계층적 라우팅 프로토콜에서의 이동 싱크 노드 지원 방안)

  • Kim, Dae-Young;Cho, Jin-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1B
    • /
    • pp.48-57
    • /
    • 2008
  • Wireless sensor networks are composed of a lot of sensor nodes and they are used to monitor environments. Since many studies on wireless sensor networks have considered a stationary sink node, they cannot provide fully ubiquitous applications based on a mobile sink node. In those applications, routing paths for a mobile sink node should be updated while a sink node moves in order to deliver sensor data without data loss. In this paper, we propose a method to continuously update routing paths for a mobile sink node which can be extended on hierarchical multi-hop routing protocols in wireless sensor networks. The efficiency of the proposed scheme has been validated through comparing existing method using a location based routing protocol by extensive computer simulation.

A Reporting Interval Adaptive, Sensor Control Platform for Energy-saving Data Gathering in Wireless Sensor Networks

  • Choi, Wook;Lee, Yong;Kim, Sang-Chul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.2
    • /
    • pp.247-268
    • /
    • 2011
  • Due to the application-specific nature of wireless sensor networks, the sensitivity to such a requirement as data reporting interval varies according to the type of application. Such considerations require an application-specific, parameter tuning paradigm allowing us to maximize energy conservation prolonging the operational network lifetime. In this paper, we propose a reporting interval adaptive, sensor control platform for energy-saving data gathering in wireless sensor networks. The ultimate goal is to extend the network lifetime by providing sensors with high adaptability to application-dependent or time-varying, reporting interval requirements. The proposed sensor control platform is based upon a two phase clustering (TPC) scheme which constructs two types of links within each cluster - namely, direct link and relay link. The direct links are used for control and time-critical, sensed data forwarding while the relay links are used only for multi-hop data reporting. Sensors opportunistically use the energy-saving relay link depending on the user reporting, interval constraint. We present factors that should be considered in deciding the total number of relay links and how sensors are scheduled for sensed data forwarding within a cluster for a given reporting interval and link quality. Simulation and implementation studies demonstrate that the proposed sensor control platform can help individual sensors save a significant amount of energy in reporting data, particularly in dense sensor networks. Such saving can be realized by the adaptability of the sensor to the reporting interval requirements.

Effect of Relay Capability on VoIP Performance in OFDMA based Relay Systems (OFDMA 기반 Relay 시스템에서 Relay의 Capability에 따른 VoIP 성능 분석)

  • Ahn, Sung-Bo;Choi, Ho-Young;Hong, Dae-Hyoung;Lim, Jae-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3B
    • /
    • pp.304-310
    • /
    • 2009
  • In this paper, we evaluate the performance of VoIP in OFDMA-based relay systems with various capabilities of relays. We classify relays according to capability as "mid-capability (MC)" and "high-capability (HC)" relay. In system with HC relays, not only base station (BS) but also relay station (RS) performs scheduling at its ova whereas only BS performs scheduling in system with MC relays using the information reported by MS (i.e. the received signal-to-interference-plus-noise ratio (SINR) of mobile station (HS), the amount of MS traffic, etc). In system with MC relays, the controling overhead of BS is larger than that of system with HC relays. However, since BS has all MS information, efficient resource allocation and scheduling is possible. We derived the "average packet delay," "good packet ratio," and "cell goodput" in a VoIP environment. The simulation results demonstrate that the system with MC relays has better VoIP performance over that with HC relays.

An Enhanced Routing Protocol for Supporting Node Mobility in Multi-hop Ad-hoc Networks (다중 홉 Ad-hoc 네트워크에서 노드이동성을 고려한 라우팅 프로토콜에 관한 연구)

  • Kim, Kwan-Woong;Kim, Byun-Gon;Kim, Yong-Kab
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.9
    • /
    • pp.1665-1671
    • /
    • 2007
  • Mobile Ad hoc Networks (MANETs) refer to autonomous networks in which wireless data communications are established between multiple nodes in a given coverage area without a base station or centralized administration. Because of node mobility and limited battery life, the network topology may changes frequently. Selecting the most reliable path during route discovery process is important to improve performance in ad-hoc networks. In this study, we proposed an enhanced routing protocol based on AODV by monitoring variation of receiving signal strength. New metric function that consists of node mobility and hops of path is used for routing decision. From extensive experiments by using NS-2, The performance of the proposed routing scheme has been imp개ved by comparison to AODV protocol.

Research on Relay Selection Technology Based on Regular Hexagon Region Segmentation in C-V2X

  • Li, Zhigang;Yue, Xinan;Wang, Xin;Li, Baozhu;Huang, Daoying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3138-3151
    • /
    • 2022
  • Traffic safety and congestion are becoming more and more serious, especially the frequent occurrence of traffic accidents, which have caused great casualties and economic losses. Cellular Vehicle to Everything (C-V2X) can assist in safe driving and improve traffic efficiency through real-time information sharing and communication between vehicles. All vehicles communicate directly with Base Stations (BS), which will increase the base station load. And when the communicating vehicles are too far apart, too fast or there are obstacles in the communication path, the communication link can be unstable or even interrupted. Therefore, choosing an effective and reliable multi-hop relay-assisted Vehicle to Vehicle (V2V) communication can not only reduce the base station load and improve the system throughput but also expand the base station coverage and improve the communication quality of edge vehicles. Therefore, a communication area division scheme based on regular hexagon segmentation technology is proposed, a relay-assisted V2V communication mechanism is designed for the divided communication areas, and an efficient communication link is constructed by selecting the best relay node. Simulation results show that the scheme can improve the throughput of the system by nearly 55% and enhance the robustness of the V2V communication link.