• Title/Summary/Keyword: multi-hazard analysis

Search Result 96, Processing Time 0.029 seconds

Probabilistic analysis of seismically isolated elevated liquid storage tank using multi-phase friction bearing

  • Moeindarbari, Hesamaldin;Malekzadeh, Masoud;Taghikhany, Touraj
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.111-125
    • /
    • 2014
  • Multiple level performance of seismically isolated elevated storage tank isolated with multi-phase friction pendulum bearing is investigated under totally 60 records developed for multiple level seismic hazard analysis (SLE, DBE and MCE). Mathematical formulations involving complex time history analysis have been proposed for analysis of typical storage tank by multi-phase friction pendulum bearing. Multi-phase friction pendulum bearing represent a new generation of adaptive friction isolation system to control super-structure demand in different hazard levels. This isolator incorporates four concave surfaces and three independent pendulum mechanisms. Pendulum stages can be set to address specific response criteria for moderate, severe and very severe events. The advantages of a Triple Pendulum Bearing for seismic isolation of elevated storage tanks are explored. To study seismic performance of isolated elevated storage tank with multi-phase friction pendulum, analytical simulations were performed with different friction coefficients, pendulum radii and slider displacement capacities.

Highway flood hazard mapping in Thailand using the Multi Criteria Analysis based the Analytic Hierarchy Process

  • Budhakooncharoen, Saisunee;Mahadhamrongchai, Wichien;Sukolratana, Jiraroth
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.236-236
    • /
    • 2015
  • Flood is one of the major natural disasters affecting millions of people. Thailand also, frequently faces with this type of disaster. Especially, 2011 mega flood in Central Thailand, inundated highway severely attributed to the failure of national economic and risk to life. Lesson learned from such an extreme event caused flood monitoring and warning becomes one of the sound mitigations. The highway flood hazard mapping accomplished in this research is one of the strategies. This is due to highway flood is the potential risk to life and limb, and potential damage to property. Monitoring and warning therefore help reducing live and property losses. In this study, degree of highway flood hazard was assessed by weighting factors for each cause of the highway flood using Multi Criteria Analysis (MCA) based Analytic Hierarchy Process (AHP). These weighting factors are the essential information to classify the degree of highway flood hazard to enable pinpoint on flood monitoring and flood warning in hazard areas. The highway flood causes were then investigated. It was found that three major factors influence to the highway flood are namely the highway characteristics, the hydrological characteristics and the land topography characteristics. The weight of importance for each cause of the highway flood in the whole country was assessed by weighting 3 major factors influence to the highway flood. According to the result of MCA analysis, the highway, the hydrological and the land topography characteristics were respectively weighted as 35, 35 and 30 percent influence to the cause of highway flood. These weighting factors were further utilized to classify the degree of highway flood hazard. The Weight Linear Combination (WLC) method was used to compute the total score of all highways according to each factor. This score was later used to categorize highway flood as high, moderate and low degree of hazard levels. Highway flood hazard map accomplished in this research study is applicable to serve as the handy tool for highway flood warning. However, to complete the whole warning process, flood water level monitoring system for example the camera gauge should be installed in the hazard highway. This is expected to serve as a simple flood monitor as part of the warning system during such extreme or critical event.

  • PDF

Techniques for Hazard Analysis of Curved Road Based on USN (굴곡 도로를 위한 USN 기반 위험 분석 기술)

  • Ko, Ik-June;Oh, Byoung-Woo
    • Spatial Information Research
    • /
    • v.17 no.1
    • /
    • pp.25-37
    • /
    • 2009
  • In this paper, we propose techniques for hazard analysis of curved road based on USN. The techniques consist of models and algorithms. Models of curved road, road direction, sensor, vehicle and hazard are proposed. To analyze hazard in curved road and give warning to corresponding vehicle in realtime multi-level algorithms are proposed. An application program implements the models and algorithms to simulate proposed techniques with real-time visualization.

  • PDF

Application of Fuzzy Information Representation Using Frequency Ratio and Non-parametric Density Estimation to Multi-source Spatial Data Fusion for Landslide Hazard Mapping

  • Park No-Wook;Chi Kwang-Hoon;Kwon Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.26 no.2
    • /
    • pp.114-128
    • /
    • 2005
  • Fuzzy information representation of multi-source spatial data is applied to landslide hazard mapping. Information representation based on frequency ratio and non-parametric density estimation is used to construct fuzzy membership functions. Of particular interest is the representation of continuous data for preventing loss of information. The non-parametric density estimation method applied here is a Parzen window estimation that can directly use continuous data without any categorization procedure. The effect of the new continuous data representation method on the final integrated result is evaluated by a validation procedure. To illustrate the proposed scheme, a case study from Jangheung, Korea for landslide hazard mapping is presented. Analysis of the results indicates that the proposed methodology considerably improves prediction capabilities, as compared with the case in traditional continuous data representation.

A Study on the Development of Korean Inventory for the Multi-Hazard Risk Assessment -Based on Earthquake Damage Analysis (복합재난 손실 평가를 위한 한국형 인벤토리 구축 방안 연구 -지진재해 손실 평가를 중심으로)

  • Chai, Su-Seong;Shin, Su-mi;Suh, Dongjun
    • Journal of Digital Contents Society
    • /
    • v.18 no.6
    • /
    • pp.1127-1134
    • /
    • 2017
  • The main goal of this study is to develop the system of multi-hazard risk assessment tools based on major inventories and functions. As a first step, designing and building a Korean inventory of the loss assessment was performed due to earthquake disasters. We focused on the special features, taking account of the possibly conflicting features of the various conditions such as different type of formats, environmental differences, and collected data relevant to the use of proposed risk assessment system in terms of constructing the Korean inventory including buildings and population.

Development of Multi-hazard Fragility Surface for Liquefaction of Levee Considering Earthquake Magnitude and Water Level (수위와 지진을 고려한 제방의 액상화에 대한 복합재해 취약도 곡면 작성)

  • Hwang, Ji-Min;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.6
    • /
    • pp.25-36
    • /
    • 2018
  • Soil liquefaction is one of the types of major seismic damage. Soil liquefaction is a phenomenon that can cause enormous human and economic damages, and it must be examined before designing geotechnical structures. In this study, we proposed a practical method of developing a multi-hazard fragility surface for liquefaction of levee considering earthquake magnitude and water level. Limit state for liquefaction of levee was defined by liquefaction potential index (LPI), which is frequently used to assess the liquefaction susceptibility of soils. In order to consider the uncertainty of soil properties, Monte Carlo Simulation based probabilistic analysis was performed. Based on the analysis results, a 3D fragility surface representing the probability of failure by soil liquefaction as a function of the ground motion and water level has been established. The prepared multi-hazard fragility surface can be used to evaluate the safety of levees against liquefaction and to assess the risk in earthquake and flood prone areas.

Qualitative Hazard Analysis for LNG Gas Stations Using K-PSR Method (K-PSR을 이용한 LNG 충진소에 대한 정성적 위험성평가)

  • Ko, Jae-Wook;Lee, Jae-Min;Yoo, Jin-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.63-69
    • /
    • 2006
  • With the increased interest in reducing air pollution, supply of natural gas for gas vehicles is increasing. Thus, the number of establishments of LNG and CNG stations is increasing as well. However, due to major gas accidents such as the fire and explosion accident of a Bucheon LPG station in 1998, it is difficult to establish a new station. In this research, we conducted qualitative hazard analysis fer LCNG/LNG multi-station by using the K-PSR method and proposed recommendations for hazard mitigation.

  • PDF

Survival Analysis of Patients with Gastric Cancer Undergoing Surgery at the Iran Cancer Institute: A Method Based on Multi-State Models

  • Zare, Ali;Mahmoodi, Mahmood;Mohammad, Kazem;Zeraati, Hojjat;Hosseini, Mostafa;Naieni, Kourosh Holakouie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6369-6373
    • /
    • 2013
  • Background: Gastric cancer is one of the most common causes of cancer deaths all over the world and the most important reason for its high rate of death is its belated diagnosis at advanced stages of the disease. Events occur in patients which are regarded not only as themselves factors affecting patients' survival but also which can be affected by other factors. This study was designed and implemented aiming to identify these events and to investigate factors affecting their occurrence. Materials and Methods: Data from 330 patients with gastric cancer undergoing surgery at the Iran Cancer Institute from 1995-1999 were analyzed. The survival time of these patients was determined after surgery and the effects of various factors including demographic, diagnostic and clinical as well as medical, and post-surgical varuiables on the occurrence of death hazard without relapse, hazard of relapse, and death hazard with a relapse were assessed. Results: The median survival time for these patients was 16.3 months and the 5-year survival rate was 21.6%. Based on the results of multi-state model, age and distant metastases affected relapse whereas disease stage, type and extent of surgery, lymph nodes metastases, and number of renewed treatments affected death hazard without relapse. Moreover, age, type and extent of surgery, number of renewed treatments, and liver metastases were identified as factors affecting death hazard in patients with relapse. Conclusions: Most cancer studies pay heed to factors which have effect on death occurrence, but some events occur which should be taken into consideration to better describe the natural process of the disease and provide researchers with more accurate data.

TMD-Based Adaptive Smart Structural Control System for Multi-Hazard (TMD 기반 적응형 스마트 구조제어시스템의 멀티해저드 적응성 평가)

  • Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.720-725
    • /
    • 2017
  • This paper evaluated the safety and serviceability of a building structure considering the multi-hazard and proposed TMD-based adaptive smart control system to improve the structural performance. To make multi-hazard loads, an artificial earthquake and artificial wind loads were generated based on representative regions of strong seismicity and strong wind in U.S.A. The safety and serviceability of a 20-story example building structure were investigated using the generated artificial loads. A smart TMD was employed to improve the safety and serviceability of the example structure and its capacity of structural performance improvement was evaluated. The smart TMD was comprised of a MR (magnetorheological) damper. Numerical analysis showed that the example building structure could not satisfy the design limit of safety and serviceability with respect to multi-hazard. The smart TMD effectively reduced the seismic responses associated with the safety and wind-induce responses associated with serviceability.

Researches Related to Seismic Hazard Mitigation in Taiwan

  • Loh, Chin-Hsiung;Yeh, Chin-Hsun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.13-26
    • /
    • 1998
  • In view of the rapid development of economics and technology, perilous meteorological and geological conditions often cause natural disasters and result in severe loss of lives and properties in Taiwan. To promote multi-hazard mitigation strategies in an integrated a, pp.oach, the National Science Council established a National Science and Technology Program for Disaster Mitigation in January 1998. This program emphasizes on the implementation of research results in the National Disaster Management System. This paper describes the earthquake loss estimation methodology that is currently developed in Taiwan. Topics of potential earth science hazards (PESH) and building vulnerability analysis are described in detail.

  • PDF