• Title/Summary/Keyword: multi-frame

Search Result 869, Processing Time 0.029 seconds

Evaluation of the Effect of Riser Support System on Global Spar Motion by Time-domain Nonlinear Hull/Mooring/Riser Coupled Analysis

  • KOO BON-JUN;KIM MOO-HYUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.5 s.66
    • /
    • pp.16-25
    • /
    • 2005
  • The effect of vertical riser support system on the dynamic behaviour of a classical spar platform is investigated. Spar platform generally uses buoyancy-can riser support system, but as water depth gets deeper the alternative riser support system is required due to safety and cost issues. The alternative riser support system is to hang risers off the spar platform using pneumatic cylinders rather than the buoyancy-can. The existing numerical model for hull/mooring/riser coupled dynamics analysis treats riser as an elastic rod truncated at the keel (truncated riser model), thus, in this model, the effect of riser support system can not be modeled correctly. Due to this reason, the truncated riser model tends to overestimate the spar pitch and heave motion. To evaluate more realistic global spar motion, mechanical coupling among risers, guide frames and support cylinders inside of spar moon-pool should be modeled. In the newly developed model, the risers are extended through the moon-pool by using nonlinear finite element methods with realistic boundary condition at multiple guide frames. In the simulation, the vertical tension from pneumatic cylinders is modeled by using ideal-gas equation and the vertical tension from buoyancy-cans is modeled as constant top tension. The different dynamic characteristics between buoyancy-can riser support system and pneumatic riser support system are extensively studied. The alternative riser support system tends to increase spar heave motion and needs damper system to reduce the spar heave motion.

Preliminary Orbit Determination For A Small Satellite Mission Using GPS Receiver Data

  • Nagarajan, Narayanaswamy;Bavkir, Burhan;John, Ong Chuan Fu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.141-144
    • /
    • 2006
  • The deviations in the injection orbital parameters, resulting from launcher dispersions, need to be estimated and used for autonomous satellite operations. For the proposed small satellite mission of the university there will be two GPS receivers onboard the satellite to provide the instantaneous orbital state to the onboard data handling system. In order to meet the power requirements, the satellite will be sun-tracking whenever there is no imaging operation. For imaging activities, the satellite will be maneuvered to nadir-pointing mode. Due to such different modes of orientation the geometry for the GPS receivers will not be favorable at all times and there will be instances of poor geometry resulting in no output from the GPS receivers. Onboard the satellite, the orbital information should be continuously available for autonomous switching on/off of various subsystems. The paper presents the strategies to make use of small arcs of data from GPS receivers to compute the mean orbital parameters and use the updated orbital parameters to calculate the position and velocity whenever the same is not available from GPS receiver. Thus the navigation message from the GPS receiver, namely the position vector in Earth-Centered-Earth-Fixed (ECEF) frame, is used as measurements. As for estimation, two techniques - (1) batch least squares method, and (2) Kalman Filter method are used for orbit estimation (in real time). The performance of the onboard orbit estimation has been assessed based on hardware based multi-channel GPS Signal simulator. The results indicate good converge even with short arcs of data as the GPS navigation data are generally very accurate and the data rate is also fast (typically 1Hz).

  • PDF

Compression of 3D color integral images using 2D referencing technique (2차원 참조 기법을 이용한 3D 컬러 집적 영상의 압축)

  • Kim, Jong-Ho;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2693-2700
    • /
    • 2009
  • This paper proposes an effective compression method to utilize the 3D integral image with large amount of data obtained by a lens array in various applications. The conventional compression methods for still images exhibit low performance in terms of coding efficiency and visual quality, since they cannot remove the correlation between elemental images. In the moving picture compression methods, 1D scanning techniques that produce a sequence of elemental images are not enough to remove the directional correlation between elemental images. The proposed method effectively sequences the elemental images from an integral image by the 2D referencing technique and compresses them using the multi-frame referencing of H.264/AVC. The proposed 2D referencing technique selects the optimal reference image according to vertical, horizontal, and diagonal correlation between elemental images. Experimental results show that compression with the sequence of elemental images presents better coding efficiency than that of still image compression. Moreover, the proposed 2D referencing technique is superior to the 1D scanning methods in terms of the objective performance and visual quality.

Extraction of Road Facility Information Using Multi-Imagery (다중영상을 이용한 도로시설물 정보추출)

  • Sohn, Duk-Jae;Yoo, Hwan-Hee;Lee, Hey-Jin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.1 s.19
    • /
    • pp.91-100
    • /
    • 2002
  • Recently, many studies on the construction of management system for road facility have been accomplished, and in its process the digital map is used as the essential data for spatial database. But in case where the existing topographical map or completion map of construction data is not sufficient for Data Base construction, the compilation, modification or renewal of digital map should be conflicted with large obstacles. This study intended to extract the road facility information using the image data of various form such as aerial photographs, terrestrial photographs and so on. The terrestrial photographic images are taken by hand-held camera, digital camera and video camera which are widely used and of low price in general. This study used the single frame images only for the raw image data, and the extracted spatial and attribute data from the images are used for modifying and updating the database. In addition, the creating possibility of the digital map in the relative scale using the spatial data extracted from the single images was tried.

  • PDF

Case Study for Ship Ad-hoc Networks under a Maritime Channel Model in Coastline Areas

  • Su, Xin;Yu, HaiFeng;Chang, KyungHi;Kim, Seung-Geun;Lim, Yong-Kon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4002-4014
    • /
    • 2015
  • ITU-R M.1842-1, as a well-known specification dedicated to maritime mobile applications, has standardized wireless transmission protocols according to the particular characteristics of a maritime communications scenario. A time division multiple access (TDMA) frame structure, along with modulation schemes to achieve a high data rate, has been described clearly in ITU-R M.1842-1. However, several specification items are still under "to be decided" status, which brings ambiguity to research works. In addition, the current version of ITU-R M.1842-1 is focused mainly on maritime transmissions in open-sea areas, where the cyclic prefix (CP) is set to zero and only 16-QAM is used in the multi-carrier (MC) system. System performance might be dramatically degraded in coastline areas due to the inter-symbol interference (ISI) caused by selective fading. This is because there is a higher probability that the signal will be reflected by obstacles in coastline areas. In this paper, we introduce the transmission resource block (TRB) dedicated to ITU-R M.1842-1 for a ship ad-hoc network (SANET), where the pilot pattern of TRB is based on the terrestrial trunked radio (TETRA). After that, we evaluated SANET performance under the maritime channel model in a coastline area. In order to avoid noise amplification and to overcome the ISI caused by selective fading, several strategies are suggested and compared in the channel estimation and equalization procedures, where the link-level simulation results finally validate our proposals.

Vibration Control of Vehicle using Road Profile Information (외란 형상 정보를 활용한 진동제어)

  • Kim, Hyo-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.431-437
    • /
    • 2017
  • In this study, based on the RPS algorithm, the application results to an electrically controlled suspension system using previewed road information are presented. Reducing the excessive vibration induced by a disturbance transmitted to the system and secure its stability is a major issue. In particular, in the automotive industry, the demand is constantly being raised. A typical external disturbance causing vibration and instability of a vehicle is an irregular roadway surface that contacts a running vehicle tire. Therefore, obtaining such profile information is an important process. The RPS algorithm using a multi sensor system was constructed and implemented in a real car. Through experimental work using the RPS system included non-contact type optical sensors, it could robustly reconstruct the road input profiles from the intermixed data onto the vehicle's dynamic motion while traveling at an uneven roadway surface. A controller with a preview control was designed in the framework of a semi-active suspension system based on the 7 degrees of freedom full vehicle model. The control performance of the system was evaluated through simulations and the results were compared with the passive vehicle condition. These results highlight the feasibility of the presented control frame.

Molecular Cloning and Characterization of a Flavanone-3-hydroxylase Gene from Rubus occidentalis L.

  • Lee, Seung Sik;Lee, Eun Mi;An, Byung Chull;Barampuram, Shyamkumar;Kim, Jae-Sung;Cho, Jae-Young;Lee, In-Chul;Chung, Byung Yeoup
    • Journal of Radiation Industry
    • /
    • v.2 no.3
    • /
    • pp.121-128
    • /
    • 2008
  • Flavanone-3-hydroxylase (F3H) is one of the key enzymes for the biosynthesis of flavonals, anthocyanins, catechins and proanthocyanins. F3H catalyzes the $3{\beta}$-hydroxylation of (2S)-flavonones to form (2R, 3R)-dihydroflavonols. In this report, we isolated a full-length cDNA of RocF3H from black raspberry (Rubus occidentalis L.) using a reverse transcriptase-PCR and rapid amplification of the cDNA ends (RACE)-PCR. The full-length cDNA of RocF3H contains a 1,098 bp open reading frame (ORF) encoding a 365 amino acid protein with a calculated molecular weight of about 41.1 kDa and isoelectric point (pI) of 5.45. The genomic DNA analysis revealed that the RocF3H gene had three exons and two introns. Comparison of the deduced amino acid sequence of the RocF3H with other F3Hs revealed that the protein is highly homologous with various plant species. The conserved amino acids ligating the ferrous iron and the residues participating in the 2-oxoglutarate binding (R-X-S) were found in RocF3H at the similar positions to other F3Hs. Southern blot analysis indicated that RocF3H exist a multi-gene family. The isolation of RocF3H gene will be helpful to further study the role of F3H gene in the biosynthesis of flavonoids in R. occidnetalis.

Development of Augmented Reality Tool for Architectural Design (건축설계 검증을 위한 증강현실 설계지원도구 개발)

  • Ryu, Jae-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.1
    • /
    • pp.49-62
    • /
    • 2015
  • In this study we have proposed the prototype of design support device for architectural design assessment using the building information modeling(BIM) data and the augmented reality(AR) technology. The proposed system consists of novel hardware composition with the transparent display, the mock-up model and the digital architectural model in the new shape of frame. The removal of background and the correction of viewer point in the capture video are proposed in order to use the transparent display in AR application. The BIM data formats are reviewed to be converted for using in AR application. Also the proposed system can be expanded to multi-user collaboration system from two user system through the suggested hardware and software compositions. The results of this study will be applied to use the mock-up model and digital architectural model in order to carry out the design assessment process efficiently and economically in the architectural design field.

Effects of the Coronavirus Disease 2019 (COVID-19) Pandemic on Outcomes among Patients with Polytrauma at a Single Regional Trauma Center in South Korea

  • Kim, Sun Hyun;Ryu, Dongyeon;Kim, Hohyun;Lee, Kangho;Jeon, Chang Ho;Choi, Hyuk Jin;Jang, Jae Hoon;Kim, Jae Hun;Yeom, Seok Ran
    • Journal of Trauma and Injury
    • /
    • v.34 no.3
    • /
    • pp.155-161
    • /
    • 2021
  • Purpose: The coronavirus disease 2019 (COVID-19) pandemic has necessitated a redistribution of resources to meet hospitals' service needs. This study investigated the impact of COVID-19 on a regional trauma center in South Korea. Methods: We retrospectively reviewed cases of polytrauma at a single regional trauma center in South Korea between January 20 and September 30, 2020 (the COVID-19 period) and compared them to cases reported during the same time frame (January 20 to September 30) between 2016 and 2019 (the pre-COVID-19 period). The primary outcome was in-hospital mortality, and secondary outcomes included the number of daily admissions, hospital length of stay (LOS), and intensive care unit (ICU) LOS. Results: The mean number of daily admissions decreased by 15% during the COVID-19 period (4.0±2.0 vs. 4.7±2.2, p=0.010). There was no difference in mechanisms of injury between the two periods. For patients admitted during the COVID-19 period, the hospital LOS was significantly shorter (10 days [interquartile range (IQR) 4-19 days] vs. 16 days [IQR 8-28 days], p<0.001); however, no significant differences in ICU LOS and mortality were found. Conclusions: The observations at Regional Trauma Center, Pusan National University Hospital corroborate anecdotal reports that there has been a decline in the number of patients admitted to hospitals during the COVID-19 period. In addition, patients admitted during the COVID-19 pandemic had a significantly shorter hospital LOS than those admitted before the COVID-19 pandemic. These preliminary data warrant validation in larger, multi-center studies.

Nonlinear modeling of roof-to-wall connections in a gable-roof structure under uplift wind loads

  • Enajar, Adnan F.;Jacklin, Ryan B.;El Damatty, Ashraf A.
    • Wind and Structures
    • /
    • v.28 no.3
    • /
    • pp.181-190
    • /
    • 2019
  • Light-frame wood structures have the ability to carry gravity loads. However, their performance during severe wind storms has indicated weakness with respect to resisting uplift wind loads exerted on the roofs of residential houses. A common failure mode observed during almost all main hurricane events initiates at the roof-to-wall connections (RTWCs). The toe-nail connections typically used at these locations are weak with regard to resisting uplift loading. This issue has been investigated at the Insurance Research Lab for Better Homes, where full-scale testing was conducted of a house under appropriate simulated uplift wind loads. This paper describes the detailed and sophisticated numerical simulation performed for this full-scale test, following which the numerical predictions were compared with the experimental results. In the numerical model, the nonlinear behavior is concentrated at the RTWCs, which is simulated with the use of a multi-linear plastic element. The analysis was conducted on four sets of uplift loads applied during the physical testing: 30 m/sincreased by 5 m/sincrements to 45 m/s. At this level of uplift loading, the connections exhibited inelastic behavior. A comparison with the experimental results revealed the ability of the sophisticated numerical model to predict the nonlinear response of the roof under wind uplift loads that vary both in time and space. A further component of the study was an evaluation of the load sharing among the trusses under realistic, uniform, and code pressures. Both the numerical model and the tributary area method were used for the load-sharing calculations.