• Title/Summary/Keyword: multi-frame

Search Result 869, Processing Time 0.029 seconds

A Study on the Fluid Flow and Heat Transfer Characteristics for the Wire-woven Bulk Kagome(WBK) Composed of Aluminum Helix Wires (알루미늄 나선형 와이어로 직조된 다층 Kagome Truss PCM의 유동 및 열전달 특성에 관한 연구)

  • Joo, Jai-Hwang;Kang, Bo-Seon;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.1
    • /
    • pp.15-22
    • /
    • 2008
  • Recently, ultra-lightweight materials with open, periodic cell structures take much attention owing to its potential for multi-functionality such as load bearing, thermal dissipation, and actuation. This paper presents experimental results on the fluid flow and heat transfer characteristics for the Wire-woven Bulk Kagome (WBK) composed of aluminum 1100 wires. The overall pressure drop and heat transfer of the WBK specimen was experimentally investigated under forced air convection condition. The pressure loss and heat transfer performance of the aluminum WBK were compared with other heat dissipation media. It was shown that heat transfer characteristics depended on relative density and surface area density. Comparison with metal foams and other heat dissipation media such as packed beds, lattice frame materials, louvered fins, and others suggests that the aluminum WBK competes favorably with the best available heat dissipation media in heat transfer performance.

Dynamic analysis of eddy current brake system for design evaluation (와전류 제동장치 설계검증을 위한 동역학적 해석)

  • Chung, Kyung-Ryul;Kim, Kyung-Taek;Paik, Jin-Sung;Benker, T.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.110-115
    • /
    • 2002
  • In this paper, the results of an analysis of the dynamic behavior of the eddy current brake(ECB) system are presented. The measured irregularity of the track in Korean high speed line and the track irregularity given by ERRI(high level) were used for simulation. The wheel-rail profile combination were analyzed with different rail gauges. A model of the bogie with an substitute body for the carbody was implemented in the Multi-body-Simulation Program SIMPACK. The ECB frame was modelled both as flexible body and as rigid body. Four different driving conditions were analyzed. In this study dynamic behavior in general were performed to evaluate the design of eddy current brake system and specially the effect of damper was also studied. A comparison of simulations with and without damper shows that the damper have most effect for lower speed. The simulation results will be verified by comparison with measured data from on line test and also used for improving design.

  • PDF

Optimal design of Base Isolation System considering uncertain bounded system parameters

  • Roy, Bijan Kumar;Chakraborty, Subrata
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.19-37
    • /
    • 2013
  • The optimum design of base isolation system considering model parameter uncertainty is usually performed by using the unconditional response of structure obtained by the total probability theory, as the performance index. Though, the probabilistic approach is powerful, it cannot be applied when the maximum possible ranges of variations are known and can be only modelled as uncertain but bounded type. In such cases, the interval analysis method is a viable alternative. The present study focuses on the bounded optimization of base isolation system to mitigate the seismic vibration effect of structures characterized by bounded type system parameters. With this intention in view, the conditional stochastic response quantities are obtained in random vibration framework using the state space formulation. Subsequently, with the aid of matrix perturbation theory using first order Taylor series expansion of dynamic response function and its interval extension, the vibration control problem is transformed to appropriate deterministic optimization problems correspond to a lower bound and upper bound optimum solutions. A lead rubber bearing isolating a multi-storeyed building frame is considered for numerical study to elucidate the proposed bounded optimization procedure and the optimum performance of the isolation system.

Probabilistic seismic assessment of mega buckling-restrained braced frames under near-fault ground motions

  • Veismoradi, Sajad;Darvishan, Ehsan
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.487-498
    • /
    • 2018
  • Buckling-restrained braces are passive control devices with high level of energy dissipation ability. However, they suffer from low post-yield stiffness which makes them vulnerable to severe ground motions, especially near-field earthquakes. Among the several methods proposed to improve resistance of BRB frames, mega-brace configuration can be a solution to increase frame lateral strength and stiffness and improve distribution of forces to prevent large displacement in braces. Due to the limited number of research regarding the performance of such systems, the current paper aims to assess seismic performance of BRB frames with mega-bracing arrangement under near-field earthquakes via a detailed probabilistic framework. For this purpose, a group of multi-story mega-BRB frames were modelled by OpenSEES software platform. In the first part of the paper, simplified procedures including nonlinear pushover and Incremental Dynamic Analysis were conducted for performance evaluation. Two groups of near-fault seismic ground motions (Non-pulse and Pulse-like records) were considered for analyses to take into account the effects of record-to-record uncertainties, as well as forward directivity on the results. In the second part, seismic reliability analyses are conducted in the context of performance based earthquake engineering. Two widely-known EDP-based and IM-based probabilistic frameworks are employed to estimate collapse potential of the structures. Results show that all the structures can successfully tolerate near-field earthquakes with a high level of confidence level. Therefore, mega-bracing configuration can be an effective alternative to conventional BRB bracing to withstand near-field earthquakes.

Hydropneumatic Modeling and Dynamic Characteristic Analysis of a Heavy Truck Semi-active Cabin Air Suspension System (대형 트럭 반능동형 캐빈 공기 현가시스템의 유공압 모델링 및 동특성 해석)

  • Lee, Kwang-Heon;Jeong, Heon-Sul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.57-65
    • /
    • 2011
  • In this paper, a hydropneumatic modeling and dynamic analysis of a heavy truck semi-active cabin air suspension system is presented. Semi-active cabin air suspension system improves driver's ride comfort by controlling the damping characteristics in accordance with driving situation. So it can reduce vibration between truck frame and cabin. Semi-active cabin air suspension system is consist of air spring, leveling valve and CDC shock absorber, and full cabin system are mathematically modelled using AMESim software. Simulation results of components and full cabin system are compared with experimental data of components and test results of a cabin using 6 axis simulation table. It is found that the simulation results are in good agreements with test results, and the hydropneumatic model can be used well to predict dynamic characterics of heavy truck semi-active cabin air suspension system.

A Study on Vibration Characteristics of Engine Mount System of a Medium Duty Truck at the Key On/Off (중형트럭 시동 시 엔진마운팅 시스템의 진동 특성 연구)

  • Kuk, Jong-Young;Lim, Jung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.97-102
    • /
    • 2008
  • The vibration of a vehicle, which is caused by and transmitted from the engine, has significant effect on the ride comfort and the dynamic characteristics of the engine mount system have direct influence on the vibration and noise of the vehicle. This paper examines the body shake caused by the engine excitation force on engine key on/off of a medium truck by experiment and simulation. The analysis model consists of the engine, a body including the frame, front and rear suspensions and tires. The force element between the body and the suspension is modeled as a combination of a suspension spring and a damper. The engine shake obtained from the experiment was compared with the result of the computer simulation, and by using the verified computer model, parametric study of the body shake on engine key on/off is performed with changing the stiffness of an engine mount rubber, the engine mount angle, and the position of engine mounts.

An Improved Contrast Control Method for LCD Monitor (LCD 모니터를 위한 개선된 콘트라스트 제어 방식)

  • 김철순;곽경섭
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.6
    • /
    • pp.609-615
    • /
    • 2002
  • In this paper, we propose a contrast for the improvement of multi-gray scale image on display system. The proposed method distinguishes a maximum value and a minimum value in input fields or frames. By this judgement, the improvement degree of image quality is decided. This method does not require field and frame memory. Moreover, its lower hardware complexity than conventional methods make it easy to apply this method for flat panel display(FPD) which requires real-time processing. And the contrast of input gray level can be controled flexibly by varying the weight the weight value which controls the contrast range. The proposed method gives an image by controlling weighting slope selectively at intervals according to the brightness-control algorithm and the type of image in the look-up table. The function of the proposed method has been verified through Synopsys VHDL and computer simulation. And its results show that the proposed method can improve the quality of image.

  • PDF

Seismic damage estimation through measurable dynamic characteristics

  • Lakshmanan, N.;Raghuprasad, B.K.;Muthumani, K.;Gopalakrishnan, N.;Sreekala, R.
    • Computers and Concrete
    • /
    • v.4 no.3
    • /
    • pp.167-186
    • /
    • 2007
  • Ductility based design of reinforced concrete structures implicitly assumes certain damage under the action of a design basis earthquake. The damage undergone by a structure needs to be quantified, so as to assess the post-seismic reparability and functionality of the structure. The paper presents an analytical method of quantification and location of seismic damage, through system identification methods. It may be noted that soft ground storied buildings are the major casualties in any earthquake and hence the example structure is a soft or weak first storied one, whose seismic response and temporal variation of damage are computed using a non-linear dynamic analysis program (IDARC) and compared with a normal structure. Time period based damage identification model is used and suitably calibrated with classic damage models. Regenerated stiffness of the three degrees of freedom model (for the three storied frame) is used to locate the damage, both on-line as well as after the seismic event. Multi resolution analysis using wavelets is also used for localized damage identification for soft storey columns.

Transformable Design in Contemporary Fashion (현대패션에 나타난 트랜스포머블 디자인)

  • Lim, Byung-Soo;Yim, Eun-Hyuk
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.17 no.3
    • /
    • pp.29-43
    • /
    • 2015
  • This study investigates transformable designs in contemporary fashion. In contemporary society, designs are accompanied by various changes such as transformation of shapes or variation of material beyond the certain form of dress. As a result of having interest in transformable designs with the various attempts on the overall design, transformable design is being suggested as an attempt as the new manner, radical concept, or alternative of multi-purpose lifestyle. With the constant research and collection presentation by the designers of empirical disposition, transformable dress has been evolving gradually. The feature of transformable design appeared in dress is considered as 'variability' which changes in the flow of time. Furthermore, the morphological variability and variability of material have been examined as visual stimuli and conversion of material. By analyzing and assorting diverse transformable dresses comprehensively, it could be divided into technique-oriented transformable design and transformable design with a wearer's intervention. The technique-oriented transformable design is subdivided into the conversion of material and the conversion of form; the transformable design with a wearer's intervention into the conversion of functional frame and the conversion of aesthetic feature.

  • PDF

Updating calibration of CIV-based single-epoch black hole mass estimators

  • Park, Daeseong;Barth, Aaron J.;Woo, Jong-Hak;Malkan, Matthew A.;Treu, Tommaso;Bennert, Vardha N.;Pancoast, Anna
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.61.1-61.1
    • /
    • 2016
  • Black hole (BH) mass is a fundamental quantity to understand BH growth, galaxy evolution, and connection between them. Thus, obtaining accurate and precise BH mass estimates over cosmic time is of paramount importance. The rest-frame UV CIV ${\lambda}1549$ broad emission line is commonly used for BH mass estimates in high-redshift AGNs (i.e., $2{\leq}z{\leq}5$) when single-epoch (SE) optical spectra are available. Achieving correct and accurate calibration for CIV-based SE BH mass estimators against the most reliable reverberation-mapping based BH mass estimates is thus practically important and still useful. By performing multi-component spectral decomposition analysis to obtained high-quality HST UV spectra for the updated sample of local reverberation-mapped AGNs including new HST STIS observations, CIV emission line widths and continuum luminosities are consistently measured. Using a Bayesian hierarchical model with MCMC sampling based on Hamiltonian Monte Carlo algorithm (Stan NUTS), we provide the most consistent and accurate calibration of CIV-based BH mass estimators for the three line width characterizations, i.e., full width at half maximum (FWHM), line dispersion (${\sigma}_{line}$), and mean absolute deviation (MAD), in the extended BH mass dynamic range of log $M_{BH}/M_{\odot}=6.5-9.1$.

  • PDF