• Title/Summary/Keyword: multi-flow

Search Result 2,287, Processing Time 0.031 seconds

3-D Concrete Model Using Non-associated Flow Rule in Dilatant-Softening Region of Multi-axial Stress State (3차원 솔리드요소 및 비상관 소성흐름 법칙을 이용한 콘크리트의 응력해석)

  • Seong, Dae Jeong;Choi, Jung Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.193-200
    • /
    • 2008
  • Cohesive and frictional materials such as concrete and soil are pressure dependent. In general, failure criterion for such materials inclined with respect to positive hydrostatic axis in Haigh-Westergaard stress space. Consequently, inelastic volumetric strain always positive with associated flow rule. In this study, to overcome this shortcoming, non-associated flow rule which controls volumetric component of plastic flow is adopted. Numerical analysis based on a constitutive model using nonuniform hardening plasticity with five parameter failure criterion and non-associated flow rule has conducted to predict concrete behavior under multi-axial stress state and verified with experimental result.

Implementation of a Fragmentation Method for Flow Control in Underwater Multi-media Communication (수중 다중 매체 통신의 흐름제어를 위한 단편화 기법 구현)

  • You, Dongsun;Shin, DongHyun;Lim, Seungsoo;Jeon, Seonghyun;Kim, Changhwa
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.7
    • /
    • pp.819-829
    • /
    • 2020
  • Underwater communication is necessarily useful for various application domains such as saving of human lives from underwater disasters, marine resource exploration, underwater military fields, underwater environment or ecosystem monitoring, fish farm monitoring and management, etc. Even though the acoustic wave has been the main underwater communication media until now, several media such as optical waves, VLF/ELF waves, magnetic fields, and infrared rays also began to be treated as possible media for underwater communication. If these underwater communicate-possible media are used mixing together, the underwater communication can be much more reliable and efficient through complementing the disadvantages of each communication media with advantages of other communication media. In fact, mixing and using multi-media for underwater communication requires the data flow control in the connection process of different media due to their communication speed gaps and bandwidth differences, and, specially, in the flow control, the appropriate message fragmentation technique is required inevitably. For this reason, this paper presents a fragmentation framework and technique necessary to the flow control in the underwater multi-media communication. In addition, through its implementation and experiments, this paper shows the feasibility on the realization of the multi-media based underwater communication.

A Study on Multi-Stage Catalytic Ignitor for Hybrid Rocket Auto Ignition (하이브리드 로켓 자동점화를 위한 다단촉매점화기에 관한 연구)

  • Choi, Woojoo;Kim, Jincheol;Kwon, Minchan;Yoo, Yeongjun;Kim, Taegyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.117-119
    • /
    • 2017
  • The multi-stage catalytic igniter for hybrid rocket auto ignition is described in this paper. After charging the catalyst and pre-heating the first stage, the $N_2O$ was supplied at the first stage with the low mass flow rate, and then the $N_2O$ with the high flow rate was supplied into the second stage. Even though the $N_2O$ flow rate was high, it was decomposed by supplying the high temperature gas which was evolved from the $N_2O$ decomposition in the first stage. This multi-stage ignitor resulted in the decrease of the ignition time in comparison with the previous ignitor, and confirmed the possibility of $N_2O$ decomposition with the high flow rate using the multi-stage catalytic-ignition system.

  • PDF

Centralized Channel Allocation Schemes for Incomplete Medium Sharing Systems with General Channel Access Constraints (불완전매체공유 시스템을 위한 집중방식 채널할당기법)

  • Kim Dae-Woo;Lee Byoung-Seok;Choe Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3B
    • /
    • pp.183-198
    • /
    • 2006
  • We define the incomplete medium sharing system as a multi-channel shared medium communication system where constraints are imposed to the set of channels that may be allocated to some transmitter-receiver node pairs. To derive a centralized MAC scheme of a incomplete medium sharing system, we address the problem of optimal channel allocation The optimal channel allocation problem is then translated into a max-flow problem in a multi-commodity flow graph, and it is shown that the optimal solution can then be obtained by solving a linear programming problem. In addition, two suboptimal channel allocation schemes are proposed to bring down the computational complexity to a practical/feasible level; (1) one is a modified iSLIP channel allocation scheme, (2) the other is sequential channel allocation scheme. From the results of a extensive set of numerical experiments, it is found that the suboptimal schemes evaluate channel utilization close to that of the optimal schemes while requiring much less amount of computation than the optimal scheme. In particular, the sequential channel allocation scheme is shown to achieve higher channel utilization with less computational complexity than . the modified iSLIP channel allocation scheme.

A study on the runner system for filling balance in multi-cavity injection molds (다수 캐비티 사출금형에서의 균형 충전을 위한 러너 시스템 연구)

  • Jeon, Kang-Il;Noh, Seung-Kyu;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1581-1588
    • /
    • 2011
  • In this study, flow characteristics in a multi-cavity injection molding process were investigated. One of main problems occurred in the multi-cavity molding is a flow imbalance among cavities since it affects physical properties and quality of products. Charge imbalance is caused by the uneven shear stress. Therefore, changes in viscosity affect the physical properties of resin and injection conditions differ in the filling imbalance phenomenon. Through, this study focus on experimental studies of flow imbalance for PC and PP resin occurring in a balanced delivery system. Experimental results were compared with CAE results. By experimental and CAE analysis, main cause for the flow imbalance is temperature distribution in cross section of runner. New runner system with a simple change of runner shape was suggested to avoid the flow imbalance. A series of simulation to confirm feasibility of Volume Runner's effects was conducted using injection molding CAE.

Strategy based PSO for Dynamic Control of UPFC to Enhance Power System Security

  • Mahdad, Belkacem;Bouktir, T.;Srairi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.315-322
    • /
    • 2009
  • Penetration and installation of a new dynamic technology known as Flexible AC Transmission Systems (FACTS) in a practical and dynamic network requires and force expert engineer to develop robust and flexible strategy for planning and control. Unified Power Flow Controller (UPFC) is one of the recent and effective FACTS devices designed for multi control operation to enhance the power system security. This paper presents a dynamic strategy based on Particle Swarm Optimization (PSO) for optimal parameters setting of UPFC to enhance the system loadability. Firstly, we perform a multi power flow analysis with load incrementation to construct a global database to determine the initial efficient bounds associated to active power and reactive power target vector. Secondly a PSO technique applied to search the new parameters setting of the UPFC within the initial new active power and reactive power target bounds. The proposed approach is implemented with Matlab program and verified with IEEE 30-Bus test network. The results show that the proposed approach can converge to the near optimum solution with accuracy, and confirm that flexible multi-control of this device coordinated with efficient location enhance the system security of power system by eliminating the overloaded lines and the bus voltage violation.

Study on a Multi-pipe Water Hammer Phenomenon by using CFD of Rapid Valve Closing (전산유체해석(CFD)을 이용한 밸브의 급폐쇄에 따른 다중 배관 수격 현상에 관한 연구)

  • Park, No-Suk;Kim, Seong-Su;Kang, Moon-Sun;Choi, Jong-Woong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.4
    • /
    • pp.479-487
    • /
    • 2013
  • This study was to investigate characteristics for the pressure wave propagation and the maximum pressure near a rapid closure valve which was installed the end of multi piping network. The multi piping network consists of one inlet and three outlet with straight pipes. The diameter of the pipes including the valve was 100 mm, 80 mm, 80 mm respectively. The valve was rapidly closed with the instantaneous time which was 0.023s in the level for the water hammer. For the simulation, the influence of the pipe thickness and deformation due to pressure-wave-propagation was not considered. CFD was conducted under the following condition : the initial pressure was 1bar in the inlet and the mass flow rate was 7.83 kg/s in the outlet(the velocity in the pipe with 100 mm diameter was 1 m/s). As the valve have conditions that were status with and without fluid flow in the pipe after valve closing, the maximum pressure change and the frequency analysis were examined. As the results, the case that was status with fluid flow appeared the higher maximum pressure than another's, the maximum frequency band was about 10 ~ 11 Hz.

DEVELOPMENT OF THE MULTI-DIMENSIONAL HYDRAULIC COMPONENT FOR THE BEST ESTIMATE SYSTEM ANALYSIS CODE MARS

  • Bae, Sung-Won;Chung, Bub-Dong
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1347-1360
    • /
    • 2009
  • A multi-dimensional component for the thermal-hydraulic system analysis code, MARS, was developed for a more realistic three-dimensional analysis of nuclear systems. A three-dimensional and two-fluid model for a two-phase flow in Cartesian and cylindrical coordinates was employed. The governing equations and physical constitutive relationships were extended from those of a one-dimensional version. The numerical solution method adopted a semi-implicit and finite-difference method based on a staggered-grid mesh and a donor-cell scheme. The relevant length scale was very coarse compared to commercial computational fluid dynamics tools. Thus a simple Prandtl's mixing length turbulence model was applied to interpret the turbulent induced momentum and energy diffusivity. Non drag interfacial forces were not considered as in the general nuclear system codes. Several conceptual cases with analytic solutions were chosen and analyzed to assess the fundamental terms. RPI air-water and UPTF 7 tests were simulated and compared to the experimental data. The simulation results for the RPI air-water two-phase flow experiment showed good agreement with the measured void fraction. The simulation results for the UPTF downcomer test 7 were compared to the experiment data and the results from other multi-dimensional system codes for the ECC delivery flow.

Study on the High Efficiency Bi-directional DC/DC Converter Topology Using Multi-Phase Interleaved Method (Multi-Phase 인터리브드 방식을 이용한 고효율 양방향 DC/DC 컨버터 토폴로지에 관한 연구)

  • Choi, Jung-Sik;Park, Byung-Chul;Chung, Dong-Hwa;Oh, Seung-Yeol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.2
    • /
    • pp.82-90
    • /
    • 2015
  • This paper proposes an efficient bi-directional DC/DC converter topology using multi-phase interleaved method for power storage system. The proposed converter topology is used for a power storage system using a vanadium redox flow battery(VRFB) and is configured to enable bidirectional power flow for charging and discharging of VRFB. Proposed DC/DC converter of the 4 leg method is reduced to 1/4 times the rating of the reactor and the power semiconductor device so can be reduce the system size. Also, proposed topology is obtained the effect of four times the switching frequency as compared to the conventional converter in each leg with a 90 degree phase shift 4 leg method. This can suppress the reduction of the life of the secondary battery because it is possible to reduce the current ripple in accordance with the charging and discharging of VRFB and may increase the efficiency of the entire system. In this paper, it proposed bidirectional high-efficiency DC/DC converter topology Using multi-phase interleaved method and proved the validity through simulations and experiments.

One-Touch Type Immunosenging Lab-on-a-chip for Portable Point-of-care System (휴대용 POC 시스템을 위한 원터치형 면역 센싱 랩온어칩)

  • Park, Sin-Wook;Kang, Tae-Ho;Lee, Jun-Hwang;Yoon, Hyun-C.;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1424-1429
    • /
    • 2007
  • This paper presents a simple and reliable one-touch type multi-immunosensing lab-on-a-chip (LOC) detecting antibodies as multi-disease markers using electrochemical method suitable for a portable point-of-care system (POCS). The multi-stacked LOC consists of a PDMS space layer for liquids loading, a PDMS valve layer with 50 im in height for the membrane, a PDMS channel layer for the fluid paths, and a glass layer for multi electrodes. For the disposable immunoassay which needs sequential flow control of sample and buffer liquids according to the designed strategies, reliable and easy-controlled on-chip operation mechanisms without any electric power are necessary. The driving forces of sequential liquids transfer are the capillary attraction force and the pneumatic pressure generated by air bladder push. These passive fluid transport mechanisms are suitable for single-use LOC module. Prior to the application of detection of the antibody as a disease marker, the model experiments were performed with anti-DNP antibody and anti-biotin antibody as target analytes. The flow test results demonstrate that we can control the fluid flow easily by using the capillary stop valve and the PDMS check valves. By the model tests, we confirmed that the proposed LOC is easily applicable to the bioanalytic immunosensors using bioelectrocatalysis.