• 제목/요약/키워드: multi-fingered hand

검색결과 18건 처리시간 0.031초

다지 손을 이용한 문자 쓰기 : 파지 모델링 및 컴플라이언스 특성 해석 (Character Writing Using Multi-Fingered Hands : Grasp Modeling and Compliance Analysis)

  • 김병호;여희주
    • 제어로봇시스템학회논문지
    • /
    • 제7권11호
    • /
    • pp.927-932
    • /
    • 2001
  • When people write a character with a pen stably, proper compliance planning is necessary. In this paper, after investigating the property of character writing task, we propose a fundamental grasp model for character writing and also analyze compliance characteristics for effective character writing using multi-fingered hands. For this, the general stiffness relation of multi-fingered hand is firstly described. Next, we investigate the grasp configurations for grasping a pen and then, we analyze the conditions of the specified stiffness matrix in the operational space to successfully and more effectively achieve the given character writing task. Through the analysis, an effective grasp modeling for successful character writing is shown. And also, we conclude that the operational compliance characteristics should be properly planned for character writing, stably and precisely.

  • PDF

초음파 모터를 이용한 다지 로봇 손 및 제어시스템 개발 (Development of a New Multi-Fingered Robot Hand Using Ultrasonic Motors and Its Control System)

  • 김병호;오상록;유범재;서일홍;최혁렬
    • 제어로봇시스템학회논문지
    • /
    • 제6권4호
    • /
    • pp.327-332
    • /
    • 2000
  • In this paper, a new multi-fingered robot hand using ultrasonic motors and its control system are developed. The developed robot hand has four fingers and fifteen articulated joints. The distal joint of each finger is directly driven by ultrasonic motor and all joints except the distal joint has low transmission gear mechanism with the motor. The developed robot hand has several advantages in size compared to a hand using conventional DC motors, and in performance compared to a hand using tendons to drive joints. A VME-bus based hand control system and ultrasonic motor driver are also developed. The performance of the hand is confirmed by using the developed control system in real-time.

  • PDF

Design and Control of a Dexterous Multi-fingered Robot Hand

  • Chung, Woo-Jin;Lee, Hyung-Jin;Kim, Mun-Sang;Lee, Chong-Won;Kang, Bong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.83.1-83
    • /
    • 2001
  • This paper presents a three-fingered robot hand, called the KIST hand, Which have one active joint and one passive joint. The thumb is fixed on the palm, and the index and the middle take lateral motions symmetrically. A mechanical clutch and an embedded force sensor, attached on the distal link of the fingers, enable the KIST hand to perform human-like functions. A result of experiment shows reliable grasping performance of the hand which maintain stable grasp under disturbances.

  • PDF

다지 로봇 시스템의 설계 및 개발에 관한 연구 (A Research on the Design and Development of a Robot System with Multi-fingered Hands)

  • 이호연;이종수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.138-141
    • /
    • 2002
  • In this paper, we developed a Master Hand which has 20 potentiometer for getting grasping data of human hands, a Slave Hand which has 20 DOF and five fingers with servo-motors, and a controller for the 7 DOF Arm with Multi-fingered hands. And, we programmed a 3D simulation S/W which controls a Robot System with Multi-fingered hands. A developed Robot System showed good performance in the grasping of an object with known position and shape.

  • PDF

Task-Based Analysis on Number of Robotic Fingers for Compliant Manipulations

  • Kim, Byoung-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권4호
    • /
    • pp.333-338
    • /
    • 2009
  • This paper presents a task-based analysis on the number of independent robotic fingers required for compliant manipulations. Based on the stiffness relation between operational space and fingertip space of a multi-fingered object manipulating system, we describe a technique for modulation of the fingertip stiffness without inter-finger coupling so as to achieve the desired stiffness specified in the operational space. Thus, we provides a guide line how many fingers are basically required for successful multi-fingered compliant tasks. Consequently, this paper enables us to assign effectively the number of fingers for various compliant manipulations by robot hands.

Motion Analysis of Soft-Fingertip Manipulation Tasks

  • Kim, Byoung-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권2호
    • /
    • pp.228-237
    • /
    • 2004
  • This paper provides a motion analysis of soft-fingertip object manipulation tasks by presenting a dynamic model of multi-fingered object manipulations with soft fingertips. It is fundamentally observed that soft fingertips employed in a multi-fingered hand generate some deformation effects during the manipulation process and also that those effects are closely related to the behavior of the manipulated object. In order to analyze the motion of using soft fingertips, a dynamic manipulation control scheme is presented. Simulation and experimental results demonstrate the motion of soft-fingertips applied in object manipulating tasks and are further used to discuss the characteristics of soft-fingertip motions.

다중센서를 이용한 로봇 손의 파지 제어

  • 이양희;서동수;박민용;이종원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.694-697
    • /
    • 1996
  • The aim of this work for 5 years from 1994 is to develop a multi-fingered robot hand and its control system for grasp and manipulation of objects dexterously. Since the robot hand is still being developed, a commercialized robot hand from Barrett Company is utilized to implement a hand controller and control algorithm. For this, VME based motion control and interface boards are developed and multi-sensors such as encoder, force/torque sensor, dynamic sensor and artificial skin sensor are partly developed and employed for the grasping control algorithm. In oder to handle uncertainties such as mechanical idleness and backlash, a fuzzy rule based grasping algorithm is also considered and tested with the developed control system.

  • PDF

다지 다관절 로봇 손의 최적 접촉력 결정 방법 (Determination of optimal contact forces for multi-fingered robotic hands)

  • 백주현;서일홍;최동훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.52-56
    • /
    • 1990
  • An algorithm is proposed to determine the optimal contact forces of robotic hands, where the soft finger contact as well as the frictional point contact are considered. Especially, the algorithm can be efficiently applied to the case of multi-point contact by inner-link as well as fingertip. To show the validities of the algorithm, several numerical exampies are presented by employing a robotics hand with three fingers each of which has four joints.

  • PDF

미지 물체의 구속상태에 관한 실시간 추정방법 (Estimation Method for Kinematic Constraint of Unknown Object by Active Sensing)

  • 황창순
    • 대한기계학회논문집A
    • /
    • 제29권2호
    • /
    • pp.188-200
    • /
    • 2005
  • Control of a multi-fingered robotic hand is usually based on the theoretical analysis for kinematics and dynamics of fingers and of object. However, the implementation of such analyses to robotic hands is difficult because of errors and uncertainties in the real situations. This article presents the control method for estimating the kinematic constraint of an unknown object by active sensing. The experimental system has a two-fingered robotic hand suspended vertically for manipulation in the vertical plane. The fingers with three degrees-of-freedom are driven by wires directly connected to voice-coil motors without reduction gears. The fingers are equipped with three-axis force sensors and with dynamic tactile sensors that detect slippage between the fingertip surfaces and the object. In order to make an accurate estimation for the kinematic constraint of the unknown object, i.e. the constraint direction and the constraint center, four kinds of the active sensing and feedback control algorithm were developed: two position-based algorithms and two force-based algorithms. Furthermore, the compound and effective algorithm was also developed by combining two algorithms. Force sensors are mainly used to adapt errors and uncertainties encountered during the constraint estimation. Several experimental results involving the motion of lifting a finger off an unknown object are presented.

손마디 접촉을 고려한 다지 다관절 로봇손의 최적 접촉력 결정 방법 (Determination of Optimal Contact Forces for Multi-Jointed, Multi-Fingered Robotic Hand Considering Contacts of Inner Links)

  • 백주현;정낙영;서일홍;최동훈
    • 대한전기학회논문지
    • /
    • 제40권8호
    • /
    • pp.825-835
    • /
    • 1991
  • This paper deals with a case for robotic hands to grasp the objects using inner link contact as well as fingertip contact. And the case is proved to be more efficient than the case of using only fingertip contact in terms of stability and uniform distribution of the contact forces. The general algorithm for the determination of the optimal ocntact force is developed for the soft finger contact as well as the point contact with friction. To show the validity of the proposed algorithm a numerical example is illustated by employing a robotic hand with three fingers each of which has four joints.