• 제목/요약/키워드: multi-filamentary wire

검색결과 9건 처리시간 0.019초

Bi-2223산화물 복합 초전도 테이프의 기계적 특성 평가 (Evaluation of Mechanical Properties in Bi-2223 Composite Superconducting Tapes)

  • 신형섭;최수용
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제3권2호
    • /
    • pp.1-4
    • /
    • 2001
  • For the practical use of a superconducting wire to magnet application, it is important to assess the Young modulus and other mechanical properties of HTS tapes. In order to establish a test method of mechanical properties for oxide composite superconductors. tensile tests of Bi-2223 multi- filamentary tapes were carried out at room temperature, as an activity of the International round robin test proposed by the committee of VAMAS/TWA 16-Subrgroup. The tapes consisting of mutli-filamentary showed a three stage tensile behavior. At the initial stage of the stress-streain curve. The elastic deformation existed in a quite nattrow strain region. But the plastic deformation was observed in a wide strain region due to the platic flow of the Ag alloy matrix. The results of RRT were also reported and discussed.

  • PDF

Overview of MgB2 superconducting conductors at Sam Dong in Korea

  • Choi, Jun Hyuk;Lee, Dong Gun;Kim, Du Na;Yoon, Gi Yeong;Jeon, Ju Heum
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제22권2호
    • /
    • pp.32-37
    • /
    • 2020
  • Sam Dong Co., Ltd. has been succeeded in producing a 1 km multi-filament conductor in 2018. So far, we become more widespread to fabricate a variety of customized multi-filament wires such as 6 + '1' Cu, 18 + '1' Cu, and 36 + '1' Cu. In this work, we discuss the research progress on various MgB2 wires over the past three years. We also provide a brief review for applications with our wires.

Bi-2223/Ag 고온 초전도 선재의 임계전류 및 소세징에 미치는 인발 조건의 영향 (The Influence of Drawing Parameters on Sausaging and Critical Current of Bi-2223/Ag HTS Wires.)

  • 하홍수;오상수;하동우;김상철;권영길;류강식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.488-491
    • /
    • 2000
  • Bi-2223/Ag superconducting wires have been mainly prepared by a powder-in-tube method. The drawing and the rolling are main processes to increase the core density and wire length. In the fabrication of long wire, especially, the drawing should be precisely controlled to assure the filament homogeneity. In this paper, the influences of drawing die angle, bearing length and reduction ratio on the sausaging and the critical current density of the wire are investigated. Single cored and multi-filamentary wires are fabricated by PIT method with different conditions. The core densities and sausaging in the wires are investigated and are discussed regarding their relationship to the I$_{c}$. It was made clear that the geometry of drawing die is sensitively dependent on the sausaging. The improvement of I$_{c}$ was achieved by reducing the die angle and high core density.ity.

  • PDF

적층형 초전도 다심 선재 제조 (Fabrication of coated conductor stacked multi-filamentary wire)

  • 윤기수;하홍수;오상수;문승현;김철진
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권1호
    • /
    • pp.4-7
    • /
    • 2012
  • Coated conductors have been developed to increase piece length and critical current for electric power applications. Otherwise, Many efforts were carried out to reduce AC loss of coated conductor for AC applications. Twisting and cabling processes are effective to reduce AC loss but, these processes can not be applied for tape shaped coated conductor. It is inevitable to have thin rectangular shape because coated conductor is fabricated by thin film deposition process on metal substrate. In this study, round shape superconducting wire was first fabricated using coated conductors. First of all, Ag coated conductor was used. coated conductor was slitted to several wires with narrow width below 1mm. 12ea slitted wires were parallel stacked on top of another until making up the square cross-section. The bundle of coated conductors was heat treated to stick on each other by diffusion bonding and then copper plated to make round shape wire. Critical current of round wire was measured 185A at 77K, self field.

Analysis of the local superconducting properties in YBCO coated conductors with striations

  • Kim, Muyong;Park, Sangkook;Park, Heeyeon;Ri, Hyeong-Cheol
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권2호
    • /
    • pp.25-30
    • /
    • 2015
  • In order to realize economical applications, it is important to reduce the ac loss of 2G high-temperature superconductor coated conductors. It seems to be reasonable that a multi-filamentary wire can decrease the magnetization loss. In this study, we prepared two samples of YBCO coated conductors with striations. We measured local superconducting properties of both samples by using Low Temperature Scanning Laser and Hall Probe Microscopy (LTSLHPM). The distribution of the local critical temperature of samples was analyzed from experimental results of Low Temperature Scanning Laser Microscopy (LTSLM) near the superconducting transition temperature. According to LTSLM results, spatial distributions of the local critical temperature of both samples are homogeneous. The local current density and the local magnetization in samples were explored from measuring stray fields by using Scanning Hall Probe Microscopy (SHPM). From SHPM results, the remanent field pattern of the one bridge sample in an external magnetic field confirms the Bean's critical state model and the three bridge sample has similar remanent field pattern of the one bridge sample. The local magnetization curve in the three bridge sample was measured from external fields from -500 Oe to 500 Oe. We visualized that the distribution of local hysteresis loss are related in the distribution of the remanent field of the three bridge sample. Although the field dependence of the critical current density must be taken into account, the relation of the local hysteresis loss and the remanent field from Bean's model was useful.

A Study of Characteristic of Electrical-magnetic and Neutron Diffraction of Long-wire High-superconductor for Reducing Energy Losses

  • Jang, Mi-Hye
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권6호
    • /
    • pp.265-272
    • /
    • 2008
  • In this paper, AC losses of long wire Bi-2223 tapes with different twist pitch of superconducting core were fabricated, measured and analyzed. These samples produced by a powder-in-tube method are multi-filamentary tape with Ag matrix. Also, it's produced by non-twist. The critical current measurement was carried out under the environment in Liquid nitrogen and in zero field by 4-prob method. And the Magnetic measurement was carried out under the environment of applied time-varying transport current by transport method. From experiment, the susceptibility measurements were conducted while cooling in a magnetic field. Flux loss measurements were conducted as a function of ramping rate, frequency and field direction. The AC flux loss increases as the twist-pitch of the tapes decreased, in agreement with the Norris Equation. Neutron-diffraction measurements have been carried out investigate the crystal structure, magnetic structures, and magnetic phase transitions in Bi-2223([Bi, Pb]:Sr:Ca:Cu:O).

고온 초전도 tape의 임계전류 저하에 따른 교류손실 특성 (AC loss Characteristics under Critical Current Degradation of HTS Tapes)

  • 김해준;조전욱;김재호;심기덕;곽동순;배준한;김해종;성기철
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제7권3호
    • /
    • pp.29-33
    • /
    • 2005
  • Critical current$(I_c)$ degradation of High $T_c$ Superconducting(HTS) tapes and AC loss under mechanical load is one of the hottest issues in HTS development and application. Mechanical load reduces the critical current of superconducting wire, and the $I_c$ degradation affects the AC loss of the wire. We measured the $I_c$ degradation and AC loss under tension and bending of Bi-2223 tapes made by 'Powder-in-Tube' technique at 77K with self-field. Also, we have studied the frequency characteristics on self-field AC loss in multi-filamentary Bi-2223/Ag tape at 77K. The measurement results and discussions on the relationship between $I_c$ degradation and AC loss are presented.

고온 초전도체의 임계전류 저하에 따른 교류 손실 특성 (Ac Loss Characteristics under Critical Current Degradation of HTS Tapes)

  • 김해준;김재호;심기덕;조전욱;곽동순;김해종;성기철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.286-287
    • /
    • 2005
  • Critical current(Ic) degradation of HTS tapes and AC loss under mechanical load is one of the hottest issues in HTS development and application. Mechanical load reduces the critical current of superconducting wire, and the Ie degradation affects the AC loss of the wire. We measured the Ie degradation and AC loss under tension and bending of Bi-2223 tapes processed by "Powder-in-Tube" technique at 17K with self-field. And we have studied the frequency dependence of self-field AC loss in multi-filamentary Bi-2223/Ag tape at 77K. The measurement results and discussions on the relationship between Ic degradation and AC loss are presented.

  • PDF

In-situ 법(法)에 의한 Cu-Fe 복합조직(複合組織)의 자기적(磁氣的) 특성(特性)에 미치는 가공(加工) 및 열처리(熱處理)의 영향(影響) (The Effect of Cold Working and Heat Treatment on the Magnetic Properties of in-situ Formed Cu-Fe Composites)

  • 서수정;박현순
    • 열처리공학회지
    • /
    • 제2권2호
    • /
    • pp.38-45
    • /
    • 1989
  • The Cu-Fe permanent magnet were prepared in situ process, which has economic and mass productive merits in producing multi filamentary composites. The purpose of this research was to study the effect of reduction ratio and heat treatment on magnetic property. As the reduction ratio of Cu-Fe wire increased, the filament structure became finer and interfilament distances decreased and the morphology of filament cross section became ribbon shape. As Fe content increased significantly. The coercivity and squareness of Cu-55 wt%Fe composite increased as a reduction ratio became higher, whereas they increased to maximum values at 0.09 mm ${\phi}$ for Cu-30 wt%Fe, and 0.066 mm ${\phi}$ for CU-45 wt%Fe respectively, and decreased for further reduction. The magnetic properties of Cu-Fe composites can be more enhanced by intermediate heat treatment. The best magnetic properties were obtained from Cu-55 wt%Fe composite deformed to 0.054 mm ${\phi}$ and annealed.

  • PDF