• Title/Summary/Keyword: multi-field coupling

Search Result 68, Processing Time 0.025 seconds

Multi-field Coupling Simulation and Experimental Study on Transformer Vibration Caused by DC Bias

  • Wang, Jingang;Gao, Can;Duan, Xu;Mao, Kai
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.176-187
    • /
    • 2015
  • DC bias will cause abnormal vibration of transformers. Aiming at such a problem, transformer vibration affected by DC bias has been studied combined with transformer core and winding vibration mechanism use multi-physical field simulation software COMSOL in this paper. Furthermore the coupling model of electromagnetic-structural force field has been established, and the variation pattern of inner flux density, distribution of mechanical stress, tension and displacement were analyzed based on the coupling model. Finally, an experiment platform has been built up which was employed to verify the correctness of model.

Three-dimensional numerical simulation of hydrogen-induced multi-field coupling behavior in cracked zircaloy cladding tubes

  • Xia, Zhongjia;Wang, Bingzhong;Zhang, Jingyu;Ding, Shurong;Chen, Liang;Pang, Hua;Song, Xiaoming
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.238-248
    • /
    • 2019
  • In the high-temperature and high-pressure irradiation environments, the multi-field coupling processes of hydrogen diffusion, hydride precipitation and mechanical deformation in Zircaloy cladding tubes occur. To simulate this hydrogen-induced complex behavior, a multi-field coupling method is developed, with the irradiation hardening effects and hydride-precipitation-induced expansion and hardening effects involved in the mechanical constitutive relation. The out-pile tests for a cracked cladding tube after irradiation are simulated, and the numerical results of the multi-fields at different temperatures are obtained and analyzed. The results indicate that: (1) the hydrostatic stress gradient is the fundamental factor to activate the hydrogen-induced multi-field coupling behavior excluding the temperature gradient; (2) in the local crack-tip region, hydrides will precipitate faster at the considered higher temperatures, which can be fundamentally attributed to the sensitivity of TSSP and hydrogen diffusion coefficient to temperature. The mechanism is partly explained for the enlarged velocity values of delayed hydride cracking (DHC) at high temperatures before crack arrest. This work lays a foundation for the future research on DHC.

Multi-Domain Structural-Acoustic Coupling Analysis Using the Finite Element and Boundary Element Techniques

  • Ju, Hyeon-Don;Lee, Shi-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.555-561
    • /
    • 2001
  • A new approach to analyze the multi-domain acoustic system divided and enclosed by flexible structures is presented in this paper. The boundary element formulation of the Helmholtz integral equation is used for the internal fields and the finite element formulation for the structures surrounding the fields. We developed a numerical analysis program for the structural-acoustic coupling problems of the multi-domain system, in which boundary conditions such as the continuity of normal particle velocity and sound pressure in the structural interfaces between Field 1 and Field 2 are not needed. The validity of the numerical analysis program is verified by comparing the numerical results with the experimental ones. Example problems are included to investigate the characteristics of the coupled multi-domain system.

  • PDF

Calculation of Coupling Loss in a HTS Tape by using Analytic Method and Numerical Method (해석적인 방법과 수치적인 방법에 의한 고온초전도테이프의 결합손실 계산)

  • Sim, Jeong-Uk;Lee, Hui-Jun;Cha, Gwi-Su;Lee, Ji-Gwang;Han, Song-Yeop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.6
    • /
    • pp.309-315
    • /
    • 1999
  • Coupling loss is generated by the time-varying external magnetic field in the normal matrix of the multi-filamentary HTS tape. This paper calculates the coupling loss in the HTS tape. Analytic calculation of the coupling loss cannot consider the effect of the different shapes and the arrangement of the filaments. Numerical calculation by using finite element method and analytic calculation of the coupling loss have been done in this paper and results of two calculations have been compared. Transverse magnetic field and longitudinal magnetic field were considered as the external field.

  • PDF

Investigation of Electromagnetic Field Coupling with Twisted Conducting Line by Expanded Chain Matrix

  • Cho, Yong-Sun;Ro, Jong-Suk;Chung, Yong-Seek;Cheon, Changyul;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.364-370
    • /
    • 2013
  • In the current paper, we propose a new modeling algorithm to analyze the coupling between an incident electromagnetic field (EMF) and a twisted conducting line, which is a kind of non-uniform line. Typically, analysis of external field coupling to a uniform transmission line (TL) is implemented by the Baum-Liu-Tesche (BLT) equation so that the induced load responses can be obtained. However, it is difficult to apply this method to the analysis of a twisted conducting line. To overcome this limitation, we used a chain matrix composed of ABCD parameters. The proposed algorithm expands the dimension of the previous chain matrix to consider the EMF coupling effectiveness of each twisted pair, which is then applied to multi-conductor transmission line (MTL) theory. In addition, we included a comparative study that involves the results of each method applied in the conventional BLT equation and new proposed algorithm in the uniform two-wire TL case to verify the proposed method.

Seismic Response Analysis of Soil-Pile-Structure Interaction System considering the Underground Cavity (지중공동을 고려한 지반-말뚝-구조물 상호작용계의 지진응답해석)

  • 김민규;임윤묵;김문겸;이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.117-124
    • /
    • 2002
  • The major purpose of this study is to determine the dynamic behavior of soil-pile-structure interaction system considering the underground cavity. For the analysis, a numerical method fur ground response analysis using FE-BE coupling method is developed. The total system is divided into two parts so called far field and near field. The far field is modeled by boundary element formulation using the multi-layered dynamic fundamental solution that satisfied radiational condition of wave. And this is coupled with near field modeled by finite elements. For the verification of dynamic analysis in the frequency domain, both forced vibration analysis and free-field response analysis are performed. The behavior of soil non-linearity is considered using the equivalent linear approximation method. As a result, it is shown that the developed method can be an efficient numerical method to solve the seismic response analysis considering the underground cavity in 2D problem.

  • PDF

Analysis of Shielded Twisted Pair Cable to External Field Coupling by Expanded Chain Matrix Modeling

  • Cho, Yong-Sun;Jung, Hyun-Kyo;Cheon, Changyul;Chung, Young-Seek
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2049-2057
    • /
    • 2014
  • In this paper, a numerical method for analyzing coupling between high-altitude electromagnetic pulse (HEMP) as external field and a shielded twisted pair (STP) cable is proposed, which is based on an expanded chain matrix. Load responses of electromagnetic (EM) field excitation in uniform transmission line (TL) are solved by Baum-Liu-Tesche (BLT) equations in frequency domain, however, it is difficult to apply BLT equations to solve load responses of STP cable because the iteratively changing configuration of each twisted pairs are involved in cable. To avoid this problem and decrease memory and CPU time, we proposed the expanded chain matrix modeling method that is calculated using ABCD parameters, and applied multi-conductor transmission line (MTL) theory to consider the EMP coupling effectiveness of each twisted pairs. The results implemented by the proposed method are presented and compared with those obtained by the finite-difference time domain (FDTD) method as a kind of 3D full wave analysis.

Platform development for multi-physics coupling and uncertainty analysis based on a unified framework

  • Guan-Hua Qian;Ren Li;Tao Yang;Xu Wang;Peng-Cheng Zhao;Ya-Nan Zhao;Tao Yu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1791-1801
    • /
    • 2023
  • The multi-physics coupled methodologies that have been widely used to analyze the complex process occurring in nuclear reactors have also been used to the R&D of numerical reactors. The advancement in the field of computer technology has helped in the development of these methodologies. Herein, we report the integration of ADPRES code and RELAP5 code into the SALOME-ICoCo framework to form a multi-physics coupling platform. The platform exploits the supervisor architecture, serial mode, mesh one-to-one correspondence and explicit coupling methods during analysis, and the uncertainty analysis tool URANIE was used. The correctness of the platform was verified through the NEACRP-L-335 benchmark. The results obtained were in accordance with the reference values. The platform could be used to accurately determine the power peak. In addition, design margins could be gained post uncertainty analysis. The initial power, inlet coolant temperature and the mass flow of assembly property significantly influence reactor safety during the rod ejections accident (REA).

유한요소-경계요소 조합에 의한 지반-말뚝 상호작용계의 주파수 응답해석

  • 김민규;조석호;임윤목;김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.443-450
    • /
    • 2000
  • In this study a numerical method for soil-pile interaction analysis buried in multi-layered half planes is presented in frequency domain using FE-BE coupling. The total soil-pile interaction system is divided into two parts so called far field and near field beam elements are used for modeling a pile and coupled with plain strain elements for soil modeling. Boundary element formulation using the multi-layered dynamic fundamental solution is adopted to the far field and coupled with near field modeled by finite elements. In order to verify the proposed soil-pile interaction analysis method the dynamic responses of a pile on multi-layered dynamic fundamental solution is adopted to the far field and coupled with near field modeled by finite elements. In order to verify the proposed soil-pile interaction analysis method the dynamic responses of a pile on multi-layered half-planes are performed and compared with experiment results. Through this developed method the dynamic response analysis of a pile buried in multi-layered half planes can be calculated effectively in frequency domain.

  • PDF

Thermal Analysis of High Density Permanent Magnet Synchronous Motor Based on Multi Physical Domain Coupling Simulation

  • Chen, ShiJun;Zhang, Qi;He, Biao;Huang, SuRong;Hui, Dou-Dou
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.91-99
    • /
    • 2017
  • In order to meet the thermal performance analysis accuracy requirements of high density permanent magnet synchronous motor (PMSM), a method of multi physical domain coupling thermal analysis based on control circuit, electromagnetic and thermal is presented. The circuit, electromagnetic, fluid, temperature and other physical domain are integrated and the temperature rise calculation method that considers the harmonic loss on the frequency conversion control as well as the loss non-uniformly distributed and directly mapped to the temperature field is closer to the actual situation. The key is to obtain the motor parameters, the realization of the vector control circuit and the accurate calculation and mapping of the loss. Taking a 48 slots 8 poles high density PMSM as an example, the temperature rise distribution of the key components is simulated, and the experimental platform is built. The temperature of the key components of the prototype machine is tested, which is in agreement with the simulation results. The validity and accuracy of the multi physical domain coupling thermal analysis method are verified.