• 제목/요약/키워드: multi-dimensional system code

검색결과 80건 처리시간 0.024초

Modelling of multidimensional effects in thermal-hydraulic system codes under asymmetric flow conditions - Simulation of ROCOM tests 1.1 and 2.1 with ATHLET 3D-Module

  • Pescador, E. Diaz;Schafer, F.;Kliem, S.
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3182-3195
    • /
    • 2021
  • The implementation and validation of multi-dimensional (multi-D) features in thermal-hydraulic system codes aims to extend the application of these codes towards multi-scale simulations. The main goal is the simulation of large-scale three-dimensional effects inside large volumes such as piping or vessel. This novel approach becomes especially relevant during the simulation of accidents with strongly asymmetric flow conditions entailing density gradients. Under such conditions, coolant mixing is a key phenomenon on the eventual variation of the coolant temperature and/or boron concentration at the core inlet and on the extent of a local re-criticality based on the reactivity feedback effects. This approach presents several advantages compared to CFD calculations, mainly concerning the model size and computational efforts. However, the range of applicability and accuracy of the newly implemented physical models at this point is still limited and needs to be further extended. This paper aims at contributing to the validation of the multi-D features of the system code ATHLET based on the simulation of the Tests 1.1 and 2.1, conducted at the test facility ROCOM. Overall, the multi-D features of ATHLET predict reasonably well the evolution from both experiments, despite an observed overprediction of coolant mixing at the vessel during both experiments.

다파장 OCDMA 네트웍에서의 새로운 2차원 코드의 설계 (Design of a new family of multi wavelength two-dimensional codes for optical code division multiple access networks)

  • 유경식;박남규
    • 한국통신학회논문지
    • /
    • 제25권1B호
    • /
    • pp.31-41
    • /
    • 2000
  • 본 논문에서는 광 코드 분할 다중화방식 (OCDMA)에서 사용할 수 있는 ‘파장’과 ‘시간’영역에서는 준 직교 성질을 가지는 다파장 2 차원 코드의 구성 방법을 새로이 제안하였다. ‘파장’과‘시간’영역에서 직교 특성을 가지는 다파장 OCDMA 방삭은 동시 사용자의 수나 오류 확률 등의 여러 측면에서 기존이 다중 사용자 접속 방식에 비해 우수한 성능을 보인다. 특히, 새로 제안된 코드는 브래그 격자를 이용한 광학적 신호 처리 기법으로 생성, 해독 될 수 있어 전기적 신호 처리로 인한 병목 현상을 줄일 수 있는 장점을 가지고 있다.

  • PDF

3차원 미니밴 형상 주위의 비압축성 점성 유동 해석 (Incompressible Viscous Flow Analysis Around a Three Dimensional Minivan-Like Body)

  • 정영래;박원규;박영준;김종섭;홍성훈
    • 한국전산유체공학회지
    • /
    • 제2권1호
    • /
    • pp.46-53
    • /
    • 1997
  • The flow field around a three dimensional minivan-like body has been simulated. This study solves 3-D unsteady incompressible Navier-Stokes equations on a non-orthogonal curvilinear coordinate system using second-order accurate schemes for the time derivatives, and third/second-order scheme for the spatial derivatives. The Marker-and-Cell concept is applied to efficiently solve continuity equation. A H-H type of multi-block grid system is generated around a three dimensional minivan-like body. Turbulent flows have been modeled by the Baldwin-Lomax turbulent model. To validate present procedure, the flows around the Ahmed body with 12.5° of slant angle are simulated. A good agreement with other numerical results is achived. After code validation, the flows around a mimivan-like body are simulated. The simulation shows three dimensional vortex-pair just behind body. The flow separation is also observed on the rear of the body. It has concluded that the results of present study properly agreed with physical flow phenomena.

  • PDF

IDENTIFICATION OF TWO-DIMENSIONAL VOID PROFILE IN A LARGE SLAB GEOMETRY USING AN IMPEDANCE MEASUREMENT METHOD

  • Euh, D.J.;Kim, S.;Kim, B.D.;Park, W.M.;Kim, K.D.;Bae, J.H.;Lee, J.Y.;Yun, B.J.
    • Nuclear Engineering and Technology
    • /
    • 제45권5호
    • /
    • pp.613-624
    • /
    • 2013
  • Multi-dimensional two-phase phenomena occur in many industrial applications, particularly in a nuclear reactor during steady operation or a transient period. Appropriate modeling of complicated behavior induced by a multi-dimensional flow is important for the reactor safety analysis results. SPACE, a safety analysis code for thermal hydraulic systems which is currently being developed, was designed to have the capacity of multi-dimensional two-phase thermo-dynamic phenomena induced in the various phases of a nuclear system. To validate the performance of SPACE, a two-dimensional two-phase flow test was performed with slab geometry of the test section having a scale of $1.43m{\times}1.43m{\times}0.11m$. The test section has three inlet and three outlet nozzles on the bottom and top gap walls, respectively, and two outlet nozzles installed directly on the surface of the slab. Various kinds of two-dimensional air/water flows were simulated by selecting combinations of the inlet and outlet nozzles. In this study, two-dimensional two-phase void fraction profiles were quantified by measuring the local gap impedance at 225 points. The flow conditions cover various flow regimes by controlling the flow rate at the inlet boundary. For each selected inlet and outlet nozzle combination, the water flow rate ranged from 2 to 20 kg/s, and the air flow rate ranged from 2.0 to 20 g/s, which corresponds to 0.4 to 4 m/s and 0.2 to 2.3 m/s of the superficial liquid and gas velocities based on the inlet port area, respectively.

ANALYSIS OF THE ISP-50 DIRECT VESSEL INJECTION SBLOCA IN THE ATLAS FACILITY WITH THE RELAP5/MOD3.3 CODE

  • Sharabi, Medhat;Freixa, Jordi
    • Nuclear Engineering and Technology
    • /
    • 제44권7호
    • /
    • pp.709-718
    • /
    • 2012
  • The pressurized water reactor APR1400 adopts DVI (Direct Vessel Injection) for the emergency cooling water in the upper downcomer annulus. The International Standard Problem number 50 (ISP-50) was launched with the aim to investigate thermal hydraulic phenomena during a 50% DVI line break scenario with best estimate codes making use of the experimental data available from the ATLAS facility located at KAERI. The present work describes the calculation results obtained for the ISP-50 using the RELAP5/MOD3.3 system code. The work aims at validation and assessment of the code to reproduce the observed phenomena and investigate about its limitations to predict complicated mixing phenomena between the subcooled emergency cooling water and the two-phase flow in the downcomer. The obtained results show that the overall trends of the main test variables are well reproduced by the calculations. In particular, the pressure in the primary system show excellent agreement with the experiment. The loop seal clearance phenomenon was observed in the calculation and it was found to have an important influence on the transient progression. Moreover, the collapsed water levels in the core are accurately reproduced in the simulations. However, the drop in the downcomer level before the activation of the DVI from safety injection tanks was underestimated due to multi-dimensional phenomena in the downcomer that are not properly captured by one-dimensional simulations.

Development of the Unified Version of COBRA/RELAP5

  • J. J. Jeong;K. S. Ha;B. D. Chung;Lee, W. J.;S. K. Sim
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.591-598
    • /
    • 1997
  • The COBRA/RELAPS code, an integrated version of the COBRA-TF and RELAP5/MOD3 codes, has been developed for the realistic simulations of complicated, multi-dimensional, two-phase, thermal-hydraulic system transients in light water reactors. Recently, KAERA developed an unified version of the COBRA/RELAP5 code, which can run in serial mode on both workstations and personal computers. This paper provides the brief overview of the code integration scheme, the recent code modifications, the developmental assessments, and the future development plan.

  • PDF

유동 방향 변화에 따른 잠수함 주위의 3차원 점성유동 해석과 공기역학적 계수의 변화 (Viscous Flow Analysis of a Submarine with Variation of Angle of Attack and Yaw Angle)

  • 장진호;박원규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.189-192
    • /
    • 2002
  • In this paper, the submarine model, called DARPA SUBOFF model, has been numerically analyzed to investigate the aerodynamic forces variation in terms of angle of attacks and yaw angles. The SUBOFF model is consisted of the three parts : axisymmetric body, fairwater, and four symmetric stern appendages. Three dimensional unsteady incompressible Wavier-Stokes equation was used on curvilinear multi-block grid system. To validate the present code, the SUBOFF tare hull and an ellipsoid at angle of attacks of $10^{\circ}\;and\;30^{\circ}$ were simulated and a good agreement with experiments was obtained. After the code validation, the flows over SUBOFF model were simulated at three different angle of attacks and yaw angles. The variation of aerodynamic forces in terms of angle of attack and yaw angle were calculated. Also, to understand the flow features around a submarine with variation of yaw and attack angle, the pressure contours and streamlines were plotted.

  • PDF

Automated Structural Design System Using Fuzzy Theory and Neural Network

  • Lee, Joon-Seong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권1호
    • /
    • pp.43-48
    • /
    • 2002
  • This paper describes an automated computer-aided engineering (CAE) system for three-dimensional structures. An automatic finite element mesh-generation technique, which is based on fuzzy knowledge processing and computational geometry techniques, is incorporated into the system, together with a commercial FE analysis code, and a commercial solid modeler. The system allows a geometry model of interest to be automatically converted to different FE models, depending on the physical phenomena of the structures to be analyzed, i.e., electrostatic analysis, stress analysis, modal analysis, and so on. Also, with the aid of multilayer neural networks, the present system allows us to obtain automatically a design window in which a number of satisfactory design solutions exist in a multi-dimensional design parameter space. The developed CAE system is successfully applied to evaluate an electrostatic micromachines.

IMPROVEMENTS OF CONDENSATION HEAT TRANSFER MODELS IN MARS CODE FOR LAMINAR FLOW IN PRESENCE OF NON-CONDENSABLE GAS

  • Bang, Young-Suk;Chun, Ji-Ran;Chung, Bub-Dong;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • 제41권8호
    • /
    • pp.1015-1024
    • /
    • 2009
  • The presence of a non-condensable gas can considerably reduce the level of condensation heat transfer. The non-condensable gas effect is a primary concern in some passive systems used in advanced design concepts, such as the Passive Residual Heat Removal System (PRHRS) of the System-integrated Modular Advanced ReacTor (SMART) and the Passive Containment Cooling System (PCCS) of the Simplified Boiling Water Reactor (SBWR). This study examined the capability of the Multi-dimensional Analysis of Reactor Safety (MARS) code to predict condensation heat transfer in a vertical tube containing a non-condensable gas. Five experiments were simulated to evaluate the MARS code. The results of the simulations showed that the MARS code overestimated the condensation heat transfer coefficient compared to the experimental data. In particular, in small-diameter cases, the MARS predictions showed significant differences from the measured data, and the condensation heat transfer coefficient behavior along the tube did not match the experimental data. A new method for calculating condensation heat transfer coefficient was incorporated in MARS that considers the interfacial shear stress as well as flow condition determination criterion. The predictions were improved by using the new condensation model.