• Title/Summary/Keyword: multi-component modeling

Search Result 77, Processing Time 0.025 seconds

Development of Adoption Strategy and Guideline of Business Process Management Standards: Focusing on Business Process Execution Language (비즈니스 프로세스 관리 표준 도입 전략 및 지침 개발: 비즈니스 프로세스 실행 언어를 중심으로)

  • Kim, Dong-Soo
    • Journal of Information Technology Services
    • /
    • v.5 no.2
    • /
    • pp.107-123
    • /
    • 2006
  • The objectives of this study is to develop a strategy for the adoption of BPM(Business Process Management) standards and an implementation guideline of the BPM standard for BPM solution developers focusing on BPEL(Business Process Execution Language) which is regarded as the most important BPM standard. In the heterogeneous and distributed IT environments, every type of enterprise software requires standards to enhance interoperability. BPMS(Business Process Management System), which is a type of enterprise software requires BPM standards such as BPEL(Business Process Execution Language), BPMN(Business Process Modeling and Notation), BPQL(Business Process Query Language) and so on to achieve multi-system interoperability and component interoperability with their BPM solutions. It is quite helpful to provide the adoption strategy concerning BPM standards for each type of BPM solution vendors who need the BPM standards. Since the BPEL is conceived as the most important BPM standard and widely adopted by many BPM vendors, we have proposed a reference architecture for BPEL implementation and also developed the detail implementation guideline of core components of the BPM system supporting the BPEL standard. Using the strategy and implementation guideline proposed in this work, BPM solution vendors can establish their own standard adoption strategy and they can also develop their BPM solutions supporting the BPM standards more efficiently.

Holographic Polymer-Dispersed Liquid Crystals and Polymeric Photonic Crystals Formed by Holographic Photolithography

  • Kyu Thein;Meng Scott;Duran Hatice;Nanjundiah Kumar;Yandek Gregory R.
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.155-165
    • /
    • 2006
  • The present article describes the experimental and theoretical observations on the formation of holographic, polymer-dispersed, liquid crystals and electrically switchable, photonic crystals. A phase diagram of the starting mixture of nematic liquid crystal and photo-reactive triacrylate monomer was established by means of differential scanning calorimetry (DSC) and cloud point measurement. Photolithographic patterns were imprinted on the starting mixture of LC/triacrylate via multi-beam interference. A similar study was extended to a dendrimer/photocurative mixture as well as to a single component system (tetra-acrylate). Theoretical modeling and numerical simulation were carried out based on the combination of Flory-Huggins free energy of mixing and Maier-Saupe free energy of nematic ordering. The combined free energy densities were incorporated into the time-dependent Ginzburg-Landau (Model C) equations coupled with the photopolymerization rate equation to elucidate the spatio-temporal structure growth. The 2-D photonic structures thus simulated were consistent with the experimental observations. Furthermore, 3-D simulation was performed to guide the fabrication of assorted photonic crystals under various beam-geometries. Electro-optical performance such as diffraction efficiency was evaluated during the pattern photopolymerization process and also as a function of driving voltage.

Structural analysis of the Micro-Former based on results from the forming analysis for milli components (밀리부품 성형해석을 통한 Micro-Former의 거동해석)

  • Yoon J.H.;Huh H.;Kim S.S.;Choi T.H.;Na G.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.118-121
    • /
    • 2004
  • Manufacturing process for milli components has recently gained researcher's focus with the increasing tendency toward highly integrated and micro-scaled parts for electronic devices. The milli-components cannot be formed by the conventional manufacturing process since the parts require higher dimensional accuracy than the conventional ones. In order to enhance the forming accuracy and productivity, various forming procedures proposed and studied by many researchers. In this paper, forming analysis of milli-components has been studied with a new micro-former. In modeling of progressive dies, multi-stage forming sequence has been analyzed with finite element analysis by LS-DYNA3D. The analysis proposes the sequential die and part shapes with the corresponding punch force and dimensional accuracy. The analysis also considers the effect of elastic dies on the dimensional accuracy of the formed parts. The analysis result demonstrates that the elastic analysis in the milli-forming process is indispensable fur accurate forming analysis. The analysis procedure in the paper will provide good information in design of a new micro-former and milli-component.

  • PDF

Impact of multiple component deterioration and exposure conditions on seismic vulnerability of concrete bridges

  • Ghosh, Jayadipta;Padgett, Jamie E.
    • Earthquakes and Structures
    • /
    • v.3 no.5
    • /
    • pp.649-673
    • /
    • 2012
  • Recent studies have highlighted the importance of accounting for aging and deterioration of bridges when estimating their seismic vulnerability. Effects of structural degradation of multiple bridge components, variations in bridge geometry, and comparison of different environmental exposure conditions have traditionally been ignored in the development of seismic fragility curves for aging concrete highway bridges. This study focuses on the degradation of multiple bridge components of a geometrically varying bridge class, as opposed to a single bridge sample, to arrive at time-dependent seismic bridge fragility curves. The effects of different exposure conditions are also explored to assess the impact of severity of the environment on bridge seismic vulnerability. The proposed methodology is demonstrated on a representative class of aging multi-span reinforced concrete girder bridges typical of the Central and Southeastern United States. The results reveal the importance of considering multiple deterioration mechanisms, including the significance of degrading elastomeric bearings along with the corroding reinforced concrete columns, in fragility modeling of aging bridge classes. Additionally, assessment of the relative severity of exposure to marine atmospheric, marine sea-splash and deicing salts, and shows 5%, 9% and 44% reduction, respectively, in the median value bridge fragility for the complete damage state relative to the as-built pristine structure.

Effects of Brand Experience in Mass Cosmetic Brand Store on Brand Commitment and Loyalty Among Female High School Students (여고생의 중저가 화장품 점포 내 브랜드체험이 브랜드몰입과 충성도에 미치는 영향)

  • Yu, Haekyung;Lee, Minsun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.43 no.2
    • /
    • pp.167-183
    • /
    • 2019
  • This study examines the dimensions of brand experience and brand commitment within mass cosmetic brand stores that target female high school students and analyzes the effect of multi-dimension brand experience and brand commitment on brand loyalty. A model linking brand experience to brand commitment and loyalty was tested, using structural equation modeling analysis. A total of 175 female high school students completed the online questionnaire. The current study extended the understandings of the construct of brand commitment by adopting a broadened five-component consumer commitment. The results confirmed that developing brand experience in domestic mass cosmetics brand stores influences consumer loyalty through various types of brand commitment. This study can be beneficial for brand managers by providing guidelines on how to establish consumer loyalty affected by brand experience through brand commitment. Especially, brand managers should consider the negative impacts of forced commitment on consumer loyalty despite brand experience within the stores not influencing teenage consumers' forced commitment toward mass cosmetic brands. The importance of habitual commitment in the relationship between brand experience and loyalty was also revealed. The results can provide a realistic blueprint for consumer brand experience and commitment strategy.

Studies on Representative Body Sizes and 3D Body Scan Data of Korean Adolescents (한국 청소년의 대표 인체치수 및 3D 인체형상자료에 관한 연구)

  • Choi, Seung-il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.227-232
    • /
    • 2016
  • 3D body scan data are used widely in various fields to make products and living spaces for superior human body fitness. Based on the 3D measurements of human bodies for teens in Size Korea 2013, this research provides a way of finding the representative body sizes and 3D body scan data. First, a multi-dimensional vector space consisting of many measurement items was projected onto a 2D vector space with circumference and length components via factor analysis. The representative body sizes and 3D scan data close to these values were obtained via the Mahalanobis distance in 2D space. Considering the adolescent growth pattern shown on this 2D space, males were divided into 4 age groups and females were divided into 3 age groups. Using the eigenbodies corresponding to the column vectors of the component score coefficient matrix, the representative body sizes of 13 measurement items (male) and 14 measurement items (female) for each age group were calculated. The representative body sizes and 3D scan data are very useful for modeling representative 3D human figures.

K-SMPL: Korean Body Measurement Data Based Parametric Human Model (K-SMPL: 한국인 체형 데이터 기반의 매개화된 인체 모델)

  • Choi, Byeoli;Lee, Sung-Hee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.4
    • /
    • pp.1-11
    • /
    • 2022
  • The Skinned Multi-Person Linear Model (SMPL) is the most widely used parametric 3D Human Model optimized and learned from CAESAR, a 3D human scanned database created with measurements from 3,800 people living in United States in the 1990s. We point out the lack of racial diversity of body types in SMPL and propose K-SMPL that better represents Korean 3D body shapes. To this end, we develop a fitting algorithm to estimate 2,773 Korean 3D body shapes from Korean body measurement data. By conducting principle component analysis to the estimated Korean body shapes, we construct K-SMPL model that can generate various Korean body shape in 3D. K-SMPL model allows to improve the fitting accuracy over SMPL with respect to the Korean body measurement data. K-SMPL model can be widely used for avatar generation and human shape fitting for Korean.

Improvement of crossflow model of MULTID component in MARS-KS with inter-channel mixing model for enhancing analysis performance in rod bundle

  • Yunseok Lee;Taewan Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4357-4366
    • /
    • 2023
  • MARS-KS, a domestic regulatory confirmatory code of Republic of Korea, had been developed by integrating RELAP5/MOD2 and COBRA-TF. The integration of COBRA-TF allowed to extend the capability of MARS-KS, limited to one-dimensional analysis, to multi-dimensional analysis. The use of COBRA-TF was mainly focused on subchannel analyses for simulating multi-dimensional behavior within the reactor core. However, this feature has been remained as a legacy without ongoing maintenance. Meanwhile, MARS-KS also includes its own multidimensional component, namely MULTID, which is also feasible to simulate three-dimensional convection and diffusion. The MULTID is capable of modeling the turbulent diffusion using simple mixing length model. The implementation of the turbulent mixing is of importance for analyzing the reactor core where a disturbing cross-sectional structure of rod bundle makes the flow perturbation and corresponding mixing stronger. In addition, the presence of this turbulent behavior allows the secondary transports with net mass exchange between subchannels. However, a series of assessments performed in previous studies revealed that the turbulence model of the MULTID could not simulate the aforementioned effective mixing occurred in the subchannel-scale problems. This is obvious consequence since the physical models of the MULTID neglect the effect of mass transport and thereby, it cannot model the void drift effect and resulting phasic distribution within a bundle. Thus, in this study, the turbulence mixing model of the MULTID has been improved by means of the inter-channel mixing model, widely utilized in subchannel analysis, in order to extend the application of the MULTID to small-scale problems. A series of assessments has been performed against rod bundle experiments, namely GE 3X3 and PSBT, to evaluate the performance of the introduced mixing model. The assessment results revealed that the application of the inter-channel mixing model allowed to enhance the prediction of the MULTID in subchannel scale problems. In addition, it was indicated that the code could not predict appropriate phasic distribution in the rod bundle without the model. Considering that the proper prediction of the phasic distribution is important when considering pin-based and/or assembly-based expressions of the reactor core, the results of this study clearly indicate that the inter-channel mixing model is required for analyzing the rod bundle, appropriately.

Application of welding simulation to block joints in shipbuilding and assessment of welding-induced residual stresses and distortions

  • Fricke, Wolfgang;Zacke, Sonja
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.459-470
    • /
    • 2014
  • During ship design, welding-induced distortions are roughly estimated as a function of the size of the component as well as the welding process and residual stresses are assumed to be locally in the range of the yield stress. Existing welding simulation methods are very complex and time-consuming and therefore not applicable to large structures like ships. Simplified methods for the estimation of welding effects were and still are subject of several research projects, but mostly concerning smaller structures. The main goal of this paper is the application of a multi-layer welding simulation to the block joint of a ship structure. When welding block joints, high constraints occur due to the ship structure which are assumed to result in accordingly high residual stresses. Constraints measured during construction were realized in a test plant for small-scale welding specimens in order to investigate their and other effects on the residual stresses. Associated welding simulations were successfully performed with fine-mesh finite element models. Further analyses showed that a courser mesh was also able to reproduce the welding-induced reaction forces and hence the residual stresses after some calibration. Based on the coarse modeling it was possible to perform the welding simulation at a block joint in order to investigate the influence of the resulting residual stresses on the behavior of the real structure, showing quite interesting stress distributions. Finally it is discussed whether smaller and idealized models of definite areas of the block joint can be used to achieve the same results offering possibilities to consider residual stresses in the design process.

Modelling and Simulation of H2 separation in Pd Membrane System with Co-current and Current-current Flow (병류와 향류 흐름에서 수소분리를 위한 Pd 분리막 시스템의 모델링 및 모사)

  • Yi, Yong;Noh, Seunghyo;Oh, Min
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.598-602
    • /
    • 2010
  • In this paper, we carried out CFD modelling and simulation for the membrane system to separate H2 gas from the multi-component feed gas. The membrane system is of the annulus tubular type consisting of the external lumen side for the feed gas and the internal permeation side for the sweeping gas. The operating temperature and pressure of the lumen side inlet flow are $374^{\circ}C$ and 7 bar respectively and those of the sweeping gas are $374^{\circ}C$ and 3 bar, and considering these conditions, Pd membrane system was employed. CFD simulations were performed for the co-current flow and counter-current flow membrane system based on the flow directions between the feed and the sweeping gas. Comparisons and discussions were made for the H2 partial pressure, H2 mole fraction and H2 flux for both cases. Furthermore, we executed CFD simulations for the each case of the various inlet flow rates of the feed gas at the lumen side. Accordingly, we reviewed the effects of the flow rate and residence time on the performance of the membrane system.