• 제목/요약/키워드: multi-class classification model

검색결과 108건 처리시간 0.021초

An Interpretable Bearing Fault Diagnosis Model Based on Hierarchical Belief Rule Base

  • Boying Zhao;Yuanyuan Qu;Mengliang Mu;Bing Xu;Wei He
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권5호
    • /
    • pp.1186-1207
    • /
    • 2024
  • Bearings are one of the main components of mechanical equipment and one of the primary components prone to faults. Therefore, conducting fault diagnosis on bearings is a key issue in mechanical equipment research. Belief rule base (BRB) is essentially an expert system that effectively integrates qualitative and quantitative information, demonstrating excellent performance in fault diagnosis. However, class imbalance often occurs in the diagnosis task, which poses challenges to the diagnosis. Models with interpretability can enhance decision-makers' trust in the output results. However, the randomness in the optimization process can undermine interpretability, thereby reducing the level of trustworthiness in the results. Therefore, a hierarchical BRB model based on extreme gradient boosting (XGBoost) feature selection with interpretability (HFS-IBRB) is proposed in this paper. Utilizing a main BRB alongside multiple sub-BRBs allows for the conversion of a multi-classification challenge into several distinct binary classification tasks, thereby leading to enhanced accuracy. By incorporating interpretability constraints into the model, interpretability is effectively ensured. Finally, the case study of the actual dataset of bearing fault diagnosis demonstrates the ability of the HFS-IBRB model to perform accurate and interpretable diagnosis.

기계학습에 기초한 자동분류의 성능 요소에 관한 연구 (An Analytical Study on Performance Factors of Automatic Classification based on Machine Learning)

  • 김판준
    • 정보관리학회지
    • /
    • 제33권2호
    • /
    • pp.33-59
    • /
    • 2016
  • 국내 학술회의 논문으로 구성된 문헌집합을 대상으로 기계학습에 기초한 자동분류의 성능에 영향을 미치는 요소들을 검토하였다. 특히 구현이 쉽고 컴퓨터 처리 속도가 빠른 로치오 알고리즘을 사용하여 "한국정보관리학회 학술대회 논문집"의 논문에 주제 범주를 자동 할당하는 분류 성능 측면에서 분류기 생성 방법, 학습집합 규모, 가중치부여 기법, 범주 할당 방법 등 주요 요소들의 특성을 다각적인 실험을 통해 살펴보았다. 결과적으로 분류 환경 및 문헌집합의 특성에 따라 파라미터(${\beta}$, ${\lambda}$)와 학습집합의 크기(5년 이상)를 적절하게 적용하는 것이 효과적이며, 동등한 성능 수준이라면 보다 단순한 단일 가중치부여 기법을 사용하여 분류의 효율성을 높일 수 있음을 발견하였다. 또한 국내 학술회의 논문의 분류는 특정 논문에 하나 이상의 범주가 부여되는 복수-범주 분류(multi-label classification)가 실제 환경에 부합한다고 할 수 있으므로, 이러한 환경을 고려하여 주요 성능 요소들의 특성에 기초한 최적의 분류 모델을 개발할 필요가 있다.

온라인게임 계정도용 탐지모델에 관한 연구 (Online Game Identity Theft Detection Model based on Hacker's Behavior Analysis)

  • 최화재;우지영;김휘강
    • 한국게임학회 논문지
    • /
    • 제11권6호
    • /
    • pp.81-93
    • /
    • 2011
  • 온라인상에서 사용자의 개인정보를 불법적으로 취득, 악용하는 계정도용 문제는 금전적인 이득을 얻을 수 있는 MMORPG(Massively Multi-player Online Role Playing Games)에서 특히 빈번하게 발생하고 있다. 많은 사람들이 게임을 이용하여 심각한 피해로 이어질 수 있기 때문에 이에 대한 대책마련이 시급함에도 불구하고, 이를 예방하거나 탐지하는 기법에 대한 연구가 많이 부족한 실정이다. 본 연구에서는 온라인게임에서 발생했던 실제 계정도용 사례 분석을 통해 계정도용의 유형을 체계적으로 정의하고, 유형별로 계정도용을 분류하는 자동화된 탐지모델을 제안한다. 실 계정도용 사례를 분석한 결과 속전속결형, 신중형, 대담무쌍형의 3가지로 구분되었으며 이 분류 체계와 탐지모델을 국내 주요 온라인게임회사 중 한 곳에 적용하였다. 본 연구에서 제시한 유형별 탐지모델은 해킹의 유무만을 판정하던 기존의 모델보다 탐지에 있어서 향상된 성능을 보였다.

심층 CNN을 활용한 영상 분위기 분류 및 이를 활용한 동영상 자동 생성 (Image Mood Classification Using Deep CNN and Its Application to Automatic Video Generation)

  • 조동희;남용욱;이현창;김용혁
    • 한국융합학회논문지
    • /
    • 제10권9호
    • /
    • pp.23-29
    • /
    • 2019
  • 본 연구에서는 영상의 분위기를 심층 합성곱 신경망을 통해 8 가지로 분류하고, 이에 맞는 배경 음악을 적용하여 동영상을 자동적으로 생성하였다. 수집된 이미지 데이터를 바탕으로 다층퍼셉트론을 사용하여 분류 모델을 학습한다. 이를 활용하여 다중 클래스 분류를 통해 동영상 생성에 사용할 이미지의 분위기를 예측하며, 미리 분류된 음악을 매칭시켜 동영상을 생성한다. 10겹 교차 검증의 결과, 72.4%의 정확도를 얻을 수 있었고, 실제 영상에 대한 실험에서 64%의 오차 행렬 정확도를 얻을 수 있었다. 오답의 경우, 주변의 비슷한 분위기로 분류하여 동영상에서 나오는 음악과 크게 위화감이 없음을 확인하였다.

흉부 X-선 영상을 이용한 14 가지 흉부 질환 분류를 위한 Ensemble Knowledge Distillation (Ensemble Knowledge Distillation for Classification of 14 Thorax Diseases using Chest X-ray Images)

  • 호티키우칸;전영훈;곽정환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.313-315
    • /
    • 2021
  • Timely and accurate diagnosis of lung diseases using Chest X-ray images has been gained much attention from the computer vision and medical imaging communities. Although previous studies have presented the capability of deep convolutional neural networks by achieving competitive binary classification results, their models were seemingly unreliable to effectively distinguish multiple disease groups using a large number of x-ray images. In this paper, we aim to build an advanced approach, so-called Ensemble Knowledge Distillation (EKD), to significantly boost the classification accuracies, compared to traditional KD methods by distilling knowledge from a cumbersome teacher model into an ensemble of lightweight student models with parallel branches trained with ground truth labels. Therefore, learning features at different branches of the student models could enable the network to learn diverse patterns and improve the qualify of final predictions through an ensemble learning solution. Although we observed that experiments on the well-established ChestX-ray14 dataset showed the classification improvements of traditional KD compared to the base transfer learning approach, the EKD performance would be expected to potentially enhance classification accuracy and model generalization, especially in situations of the imbalanced dataset and the interdependency of 14 weakly annotated thorax diseases.

  • PDF

하이라이트 모델을 이용한 능동소나 표적신호의 합성 및 인식 (Synthesis and Classification of Active Sonar Target Signal Using Highlight Model)

  • 김태환;박정현;남종근;이수형;배건성
    • 한국음향학회지
    • /
    • 제28권2호
    • /
    • pp.135-140
    • /
    • 2009
  • 본 논문에서는 하이라이트 모델에 기반하여 능동소나의 표적신호를 합성하고, 합성된 신호를 이용하여 표적인식 실험을 수행하였다. 동일 표적이라도 표적의 자세각에 따라 다양한 형태의 파형을 갖는 신호가 합성되는데, 이에 대한 표적인식 결과를 알아보기 위해서 두 가지 방법으로 실험을 수행하였다. 하나는 고정된 여러 가지 자세각에 대한 표적신호에 대한 인식실험이고, 다른 하나는 임의의 자세각을 가지는 교신에 대만 인식 실험을 수행하였다. 인식실험을 위한 특징 인자로는 합성된 표적신호에 대해 시간영역에서 정합필터 및 포락선 검출을 통해 얻어지는 하이라이트 패턴을 사용하였으며, 패턴인식 기법으로는 다중클래스 SVM과 인공신경망을 사용하였다.

An Efficient Deep Learning Ensemble Using a Distribution of Label Embedding

  • Park, Saerom
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권1호
    • /
    • pp.27-35
    • /
    • 2021
  • 본 연구에서는 레이블 임베딩의 분포를 반영하는 딥러닝 모형을 위한 새로운 스태킹 앙상블 방법론을 제안하였다. 제안된 앙상블 방법론은 기본 딥러닝 분류기를 학습하는 과정과 학습된 모형으로 부터 얻어진 레이블 임베딩을 이용한 군집화 결과로부터 소분류기들을 학습하는 과정으로 이루어져 있다. 본 방법론은 주어진 다중 분류 문제를 군집화 결과를 활용하여 소 문제들로 나누는 것을 기본으로 한다. 군집화에 사용되는 레이블 임베딩은 처음 학습한 기본 딥러닝 분류기의 마지막 층의 가중치로부터 얻어질 수 있다. 군집화 결과를 기반으로 군집화 내의 클래스들을 분류하는 소분류기들을 군집의 수만큼 구축하여 학습한다. 실험 결과 기본 분류기로부터의 레이블 임베딩이 클래스 간의 관계를 잘 반영한다는 것을 확인하였고, 이를 기반으로 한 앙상블 방법론이 CIFAR 100 데이터에 대해서 분류 성능을 향상시킬 수 있다는 것을 확인할 수 있었다.

소리 데이터를 이용한 불량 모터 분류에 관한 연구 (A Study on the Classification of Fault Motors using Sound Data)

  • 장일식;박구만
    • 방송공학회논문지
    • /
    • 제27권6호
    • /
    • pp.885-896
    • /
    • 2022
  • 제조에서의 모터 불량은 향후 A/S 및 신뢰성에 중요한 역활을 한다. 모터의 불량 구분은 소리, 전류, 진동등의 측정을 통해 검출한다. 본 논문에서 사용한 데이터는 자동차 사이드미러 모터 기어박스의 소리를 사용하였다. 모터 소리는 3가지의 클래스로 구성되어 있다. 소리 데이터는 멜스펙트로그램을 통한 변환 과정을 거쳐 네트워크 모델에 입력된다. 본 논문에서는 불량 모터 구분 성능을 올리기 위한 데이터 증강, 클래스 불균형에 따는 다양한 데이터 재샘플링, 재가중치 조절, 손실함수의 변경, 표현 학습과 클래스 구분의 두 단계 분리 방법 등 다양한 방법을 적용하였으며, 추가적으로 커리큘럼 러닝 방법, 자기 스페이스 학습 방법 등을 Bidirectional LSTM Attention, Convolutional Recurrent Neural Network, Multi-Head Attention, Bidirectional Temporal Convolution Network, Convolution Neural Network 등 총 5가지 네트워크 모델을 통하여 비교하고, 모터 소리 구분에 최적의 구성을 찾을 수 있었다.

마할라노비스-다구치 시스템과 로지스틱 회귀의 성능비교 : 사례연구 (Performance Comparison of Mahalanobis-Taguchi System and Logistic Regression : A Case Study)

  • 이승훈;임근
    • 대한산업공학회지
    • /
    • 제39권5호
    • /
    • pp.393-402
    • /
    • 2013
  • The Mahalanobis-Taguchi System (MTS) is a diagnostic and predictive method for multivariate data. In the MTS, the Mahalanobis space (MS) of reference group is obtained using the standardized variables of normal data. The Mahalanobis space can be used for multi-class classification. Once this MS is established, the useful set of variables is identified to assist in the model analysis or diagnosis using orthogonal arrays and signal-to-noise ratios. And other several techniques have already been used for classification, such as linear discriminant analysis and logistic regression, decision trees, neural networks, etc. The goal of this case study is to compare the ability of the Mahalanobis-Taguchi System and logistic regression using a data set.

데이터 마이닝에서 패턴 분류를 위한 다중 SVM 분류기 (Multiple SVM Classifier for Pattern Classification in Data Mining)

  • 김만선;이상용
    • 한국지능시스템학회논문지
    • /
    • 제15권3호
    • /
    • pp.289-293
    • /
    • 2005
  • 패턴 분류는 실세계의 객체를 표현한 다양한 형태의 패턴 정보를 추출하여, 이것이 어떤 부류(클래스)인가를 결정하는 것이다. 패턴 분류 기술은 데이터 마이닝, 산업 자동화나 업무자동화를 위한 컴퓨터 응용 소프트웨어 기술로서 현재 다양한 분야에서 활용되고 있다. 패턴 분류 기술의 최대 목표는 분류 성능 향상이며 이것을 위해 지난 40년간 많은 연구자들이 다양한 접근 방법들을 시도해 왔다. 주로 이용되는 단일 분류 방법들로는 패턴들의 확률적 추론에 기반한 베이즈 분류기, 결정 트리, 거리함수를 이용하는 방법, 신경망, 군집화 등이 있으나 대용량 다차원 데이터를 분석하기에는 효율적이지 못하다. 따라서 상호 보완적인 여러 분류기들을 사용해 결합을 통하여 성능 향상에 도움을 주고 있는 다중 분류기 시스템에 대한 연구가 활발하게 진행되고 있다. 본 논문에서는 다중 SVM(Support Vector Machine) 분류기에 관한 기존 연구의 문제점을 지적하고 새로운 모델을 제안한다. SVM을 다중 클래스 분류기로 확장하기 위해 일대다 정책을 기반으로 하여 각각의 SVM 출력값을 비선형 패턴을 갖는 신호로 간주하고 이를 신경망에 학습하여 최종 분류 성능 결과를 결합하는 모델인 BORSE(Bootstrap Resampling SVM by Ensemble)를 제안한다.