• Title/Summary/Keyword: multi-channel MAC

Search Result 92, Processing Time 0.039 seconds

A hybrid-vehicular communication systems using a gaussian model for sending a safe message (안전 메시지 전달을 위해 가우시안 모델을 적용한 하이브리드 차량 통신 시스템)

  • Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.10 no.7
    • /
    • pp.161-166
    • /
    • 2012
  • When a car accident happened on a highway, the accident vehicle should broadcast a safe message to its neighbors in order to prevent a chain-reaction collision. Also, there is a problem that the estimation accuracy is low because of the memory limit from increasing the sampling count. In this paper, we proposes a HVC systems using a back-off algorithm applied to a gaussian model. And we proposes a MAC protocol preventing the communication delay by separating the neighbor count collection channel, data channel, and RSU communication channel. As a result, we show the frame reception success rate of our protocol improved about 10% than the previous protocol.

Channel Time Allocation Using Multi-­Channel MAC In High-­Rate Wireless Personal Area Network (고속 무선 PAN에서 다중채널 MAC을 이용한 채널 타임 할당)

  • 이병주;이승형;현영균;김용석;장기수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10c
    • /
    • pp.505-507
    • /
    • 2003
  • IEEE 802.15.3 High­Rate WPAN(Wireless Personal Area Network)는 10m 내외의 무선환경에서 실시간 비디오, 고품질 오디오 및 대용량 파일 전송을 가능케 하는 기술이다. 하나의 네트워크를 piconet단위로 구성하고 하나의 piconet에는 PNC(piconet coordinator)가 TDMA(Time Division Multiple Access) 방식으로 DEV(device)들에게 채널타임을 할당한다. 본 논문에서는 IEEE 802.15.3 High­Rate WPAN 환경에서 하나의 piconet이 형성된 경우 동시에 여러 개의 채널을 최대한 활용하기 위한 다중 채널 MAC을 제안하고 이를 위한 타임 할당 방식을 연구한다.

  • PDF

Dynamic Slot Allocation Algorithm of Wireless ATM (무선 ATM에서의 동적 슬롯 할당 알고리즘)

  • Lee, Ji-Hyun;Yu, So-Young;Seo, Ju-Ha
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.189-198
    • /
    • 2001
  • In recent years, the predominant part in telecommunications is mobile communications. The next generation network is extending today's voice-only mobile networks to multi-service networks. ATM Network is possible to carry such multi-media traffic and it will be expect to use wireless ATM for the future mobile access network. One of manly important aspects for the performance of wireless ATM is the Medium Access Control (MAC) protocol. The MAC protocol must be able to satisfyingly handle the different ATM services (CBR, VBR, ABR and UBR) with their radically different performance requirements. Additionally, the MAC protocol must be able to cope with the complex radio environment where fading, multi-path propagation interference and burst-errors further complicate the situation. In this paper, a dynamic slot allocation algorithm in wireless ATM is proposed for an efficient channel sharing/media access at the MAC layer. We use equivalent capacity in the allocation of slots for VBR traffic which is variable along the time. It is simple and effective slot allocation method for VBR service. In particular, we consider the slot allocation of a session consisted of several connections for requirement of multimedia traffic. Simulation shows that the cell loss ratio is reduced by re-allocation of extra slots in Mobile Terminal (MT).

  • PDF

MIMO Ad Hoc Networks: Medium Access Control, Saturation Throughput, and Optimal Hop Distance

  • Hu, Ming;Zhang, Junshan
    • Journal of Communications and Networks
    • /
    • v.6 no.4
    • /
    • pp.317-330
    • /
    • 2004
  • In this paper, we explore the utility of recently discovered multiple-antenna techniques (namely MIMO techniques) for medium access control (MAC) design and routing in mobile ad hoc networks. Specifically, we focus on ad hoc networks where the spatial diversity technique is used to combat fading and achieve robustness in the presence of user mobility. We first examine the impact of spatial diversity on the MAC design, and devise a MIMO MAC protocol accordingly. We then develop analytical methods to characterize the corresponding saturation throughput for MIMO multi-hop networks. Building on the throughout analysis, we study the impact of MIMO MAC on routing. We characterize the optimal hop distance that minimizes the end-to-end delay in a large network. For completeness, we also study MAC design using directional antennas for the case where the channel has a strong line of sight (LOS) component. Our results show that the spatial diversity technique and the directional antenna technique can enhance the performance of mobile ad hoc networks significantly.

A Slot Based Multi-channel MAC Protocol for Wireless Ad hoc Network (무선 애드혹 네트워크에서 슬롯방식을 이용한 멀티채널 MAC 프로토콜)

  • Kim Sung-Chan;Ko Young-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.289-291
    • /
    • 2005
  • 무선 애드혹 네트워크에서 주로 사용되는 IEEE 802.11은 모든 노드가 하나의 채널을 공유하기 때문에 높은 throughput을 기대하기 어렵다. 이러한 문제를 해결하기 위해 여러 채널을 동시에 사용하는 멀티채널 기반의 MAC 프로토콜이 제안되었다. 그러나 기존의 멀티 채널 기반 MAC 프로토콜은 멀티채널을 사용함에도 불구하고 각 노드들이 서로간의 경쟁을 통해 데이터를 전승하기 때문에, 데이터 트래픽이 증가하는 경우 throughput이 급격하게 감소한다. 따라서 본 논문에서는 데이터의 전송시간을 일정한 시간으로 나누어 노드들간의 경쟁을 방지함으로써 throughput을 향상시키는 슬롯 기반의 멀티채널 MAC 프로토콜 (Slotted MMAC)을 제안한다.

  • PDF

Cooperative MAC Protocol Using Active Relays for Multi-Rate WLANs

  • Oh, Chang-Yeong;Lee, Tae-Jin
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.463-471
    • /
    • 2011
  • Cooperative communications using relays in wireless networks have similar effects of multiple-input and multiple-output without the need of multiple antennas at each node. To implement cooperation into a system, efficient protocols are desired. In IEEE 802.11 families such as a/b/g, mobile stations can automatically adjust transmission rates according to channel conditions. However throughput performance degradation is observed by low-rate stations in multi-rate circumstances resulting in so-called performance anomaly. In this paper, we propose active relay-based cooperative medium access control (AR-CMAC) protocol, in which active relays desiring to transmit their own data for cooperation participate in relaying, and it is designed to increase throughput as a solution to performance anomaly. We have analyzed the performance of the simplified AR-CMAC using an embedded Markov chain model to demonstrate the gain of AR-CMAC and to verify it with our simulations. Simulations in an infrastructure network with an IEEE 802.11b/g access point show noticeable improvement than the legacy schemes.

An Efficient Downlink MAC Protocol for Multi-User MIMO WLANs

  • Liu, Kui;Li, Changle;Guo, Chao;Chen, Rui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4242-4263
    • /
    • 2017
  • Multi-User Multiple-Input Multiple-Output (MU-MIMO) technology has recently attracted significant attention from academia and industry because of it is increasingly important role in improving networks' capacity and data rate. Moreover, MU-MIMO systems for the Fifth Generation (5G) have already been researched. High Quality of Service (QoS) and efficient operations at the Medium Access Control (MAC) layer have become key requirements. In this paper, we propose a downlink MU-MIMO MAC protocol based on adaptive Channel State Information (CSI) feedback (called MMM-A) for Wireless Local Area Networks (WLANs). A modified CSMA/CA mechanism using new frame formats is adopted in the proposed protocol. Specifically, the CSI is exchanged between stations (STAs) in an adaptive way, and a packet selection strategy which can guarantee a fairer QoS for scenarios with differentiated traffic is also included in the MMM-A protocol. We then derive the expressions of the throughput and access delay, and analyze the performance of the protocol. It is easy to find that the MMM-A protocol outperforms the commonly used protocols in terms of the saturated throughput and access delay through simulation and analysis results.

Multi-Interface Multi-Channel R-HWMP Routing Protocol for End-to-End Bandwidth Reservation in IEEE 802.11s WMNs (IEEE 802.11s 무선 메쉬 네트워크에서 종단간 대역폭 예약을 위한 멀티 인터페이스 멀티 채널 R-HWMP 라우팅 프로토콜)

  • Jung, Whoi Jin;Kim, Bong Gyu;Lee, Jae Yong;Kim, Byung Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.37-48
    • /
    • 2014
  • Wireless mesh networks have emerged as a key technology in environment that needs wireless multi-hop communication without infrastructure and IEEE 802.11s mesh network standard have currently been established. One of big differences between this standard and the legacy IEEE 802.11 is that MCCA MAC is included to support QoS. MCCA supports bandwidth reservations between neighbors, so it can satisfy the QoS of bandwidth guarantee. However, MCCA has dis-advantages as follow; 1) it can not guarantee end-to-end bandwidth, 2) in multi-interface multi-channel wireless environments, the IEEE 802.11s does not provide a bandwidth reservation protocol and a wireless channel assignment etc. In this paper, we have proposed MIMC R-HWMP, which expands R-HWMP that was proposed in our previous work[3], to support multi-interface multi-channel. By simulation, we showed end-to-end bandwidth guarantee and the increase in the available bandwidth in multi-interface multi-channel wireless mesh networks.

A Model-based Rate Separation Algorithm Using Multiple Channels in Multi-Radio Ad Hoc Networks (멀티 라디오 애드혹 네트워크에서의 멀티 채널을 이용한 모델 기반 레이트 분할 알고리즘)

  • Kim, Sok-Hyong;Kim, Dong-Wook;Suh, Young-Joo;Kwon, Dong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.1A
    • /
    • pp.73-81
    • /
    • 2011
  • IEEE 802.11 PHY and MAC layer provide multiple channels and data rates. To improve the performance of IEEE 802.11 multi-radio ad hoc networks, it is required to utilize available channels and data rates efficiently. However, in IEEE 802.11 multi-rate networks, the rate anomaly (RA) problem occurs that the network performance is severely degraded as low-rate links affect high-rate links. Hence, in this paper, we propose a model-based rate separation (MRS) algorithm that uses multiple channels to separate different data rate links so that the RA problem is mitigated. MRS algorithm utilizes an existing throughput model that estimates the throughput of IEEE 802.11 single-hop networks to separate low-rate links and high-rate links. Through simulations, we demonstrate that the MRS algorithm shows improved network performance compared with existing algorithms in multi-radio ad hoc networks.

MAC Scheduling Algorithm in IEEE 802.15.3 HR-WPAN (고속 무선 개인화 네트워크를 위한 MAC 스케줄링 알고리즘)

  • Joo Sung-Don;Lee Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.6 s.336
    • /
    • pp.41-52
    • /
    • 2005
  • In wireless networks there are various errors, caused by multi-path fading and interference between devices which lower the network Performance. Especially, performance of IEEE 802.IS.3 High-Rate WPAN (Wireless Personal Area Network) which is operated in ISM unlicensed frequency band is easily affected by channel errors. In this paper, we propose a scheduling algorithm which takes channel errors into consideration in scheduling asynchronous data traffic. The proposed scheduling algorithm can allocate CTA(Channel Time Allocation) proportionally in accordance with the requested channel time of each device. It also prevents waste of channel time by allocating CTA of the channel-error devices to other channel-error free devices. After recovering from the channel error, the devices are compensated as much as they conceded during channel error status. Simulation results show that the proposed scheduling algorithm is superior to the existing SRPT(Shortest Remain Processing Time) and RR(Round Robin) in throughput and fairness aspects.