• Title/Summary/Keyword: multi-cells

Search Result 837, Processing Time 0.033 seconds

A study on frost prediction model using machine learning (머신러닝을 사용한 서리 예측 연구)

  • Kim, Hyojeoung;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.4
    • /
    • pp.543-552
    • /
    • 2022
  • When frost occurs, crops are directly damaged. When crops come into contact with low temperatures, tissues freeze, which hardens and destroys the cell membranes or chloroplasts, or dry cells to death. In July 2020, a sudden sub-zero weather and frost hit the Minas Gerais state of Brazil, the world's largest coffee producer, damaging about 30% of local coffee trees. As a result, coffee prices have risen significantly due to the damage, and farmers with severe damage can produce coffee only after three years for crops to recover, which is expected to cause long-term damage. In this paper, we tried to predict frost using frost generation data and weather observation data provided by the Korea Meteorological Administration to prevent severe frost. A model was constructed by reflecting weather factors such as wind speed, temperature, humidity, precipitation, and cloudiness. Using XGB(eXtreme Gradient Boosting), SVM(Support Vector Machine), Random Forest, and MLP(Multi Layer perceptron) models, various hyper parameters were applied as training data to select the best model for each model. Finally, the results were evaluated as accuracy(acc) and CSI(Critical Success Index) in test data. XGB was the best model compared to other models with 90.4% ac and 64.4% CSI, followed by SVM with 89.7% ac and 61.2% CSI. Random Forest and MLP showed similar performance with about 89% ac and about 60% CSI.

A Study on the Electrical Characteristics of Ge2Sb2Te5/Ti/W-Ge8Sb2Te11 Structure for Multi-Level Phase Change Memory (다중준위 상변환 메모리를 위한 Ge2Sb2Te5/Ti/W-Ge8Sb2Te11 구조의 전기적 특성 연구)

  • Oh, Woo-Young;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.44-49
    • /
    • 2022
  • In this paper, we investigated current (I)- and voltage (V)-sweeping properties in a double-stack structure, Ge2Sb2Te5/Ti/W-doped Ge8Sb2Te11, a candidate medium for applications to multilevel phase-change memory. 200-nm-thick and W-doped Ge2Sb2Te5 and W-doped Ge8Sb2Te11 films were deposited on p-type Si(100) substrate using magnetron sputtering system, and the sheet resistance was measured using 4 point-probe method. The sheet resistance of amorphous-phase W-doped Ge8Sb2Te11 film was about 1 order larger than that of Ge2Sb2Te5 film. The I- and V-sweeping properties were measured using sourcemeter, pulse generator, and digital multimeter. The speed of amorphous-to-multilevel crystallization was evaluated from a graph of resistance vs. pulse duration (t) at a fixed applied voltage (12 V). All the double-stack cells exhibited a two-step phase change process with the multilevel memory states of high-middle-low resistance (HR-MR-LR). In particular, the stable MR state is required to guarantee the reliability of the multilevel phase-change memory. For the Ge2Sb2Te5 (150 nm)/Ti (20 nm)/W-Ge8Sb2Te11 (50 nm), the phase transformations of HR→MR and MR→LR were observed at t<30ns and t<65ns, respectively. We believe that a high speed and stable multilevel phase-change memory can be optimized by the double-stack structure of proper Ge-Sb-Te films separated by a barrier metal (Ti).

Model for Cancer Cachexia using C26 Adenocarcinoma-Induced Wasting Syndrome for Newer Therapeutic Approach (새로운 치료 방법 접근을 위한 C26 선암세포 기반의 Cancer Cachexia 동물모델 수립)

  • Eun A Kang;Jong Min Park;Young Min Han;Sung Pyo Hong;Joo Young Cho;In Kyung Yoo;Ji Young Oh;Ki Baik Hahm
    • Journal of Digestive Cancer Research
    • /
    • v.5 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • Background: Cachexia is a multi-factorial syndrome presenting with chronic illness, decreases in body weight, and loss of adipose tissue and skeletal muscle, mostly in patients with advanced cancer and chronic wasting disease. Even after years of intensive researches, there remains no convincing therapy to prevent cancer cachexia. Methods: In this in vivo study, we have established C26 adenocarcinoma-induced cancer cachexia model in mice to explore the underlying core changes in cytokine, signal transduction, and muscle wasting. The ultimate aim of establishing animal model is to find optimal therapeutics to mitigate cancer cachexia. Results: We have administered C26 adenocarcinoma cells onto BALB/c mice and observed 4 weeks to assess the progression of cancer cachexia. Significant loss of weight accompanied with loss of appetite was noted. As C26 adenocarcinoma xenograft progressed, mortality was started from 3 weeks, accompanied with significant sarcopenia and decreased mice movement. Surges in TNF-α and IL-6 were noted with the commencement of cancer cachexia. Conclusion: Using C26 adenocarcinoma cancer cachexia model, we can screen the optimal therapeutics to mitigate cancer cachexia, in which agents to modulate IL-6, TNF-α, and NF-κB were essential.

  • PDF

A Study on Metaverse Framework Design for Education and Training of Hydrogen Fuel Cell Engineers (수소 연료전지 엔지니어 양성을 위한 메타버스 교육훈련 플랫폼에 관한 연구)

  • Yang Zhen;Kyung Min Gwak;Young J. Rho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.207-212
    • /
    • 2024
  • The importance of hydrogen fuel cells continues to be emphasized, and there is a growing demand for education and training in this field. Among various educational environments, metaverse education is opening a new era of change in the global education industry, especially to adapt to remote learning. The most significant change that the metaverse has brought to education is the shift from one-way, instructor-centered, and static teaching approaches to multi-directional and dynamic ones. It is expected that the metaverse can be effectively utilized in hydrogen fuel cell engineer education, not only enhancing the effectiveness of education by enabling learning and training anytime, anywhere but also reducing costs associated with engineering education.In this research, inspired by these ideas, we are designing a fuel cell education platform. We have created a platform that combines theoretical and practical training using the metaverse. Key aspects of this research include the development of educational training content to increase learner engagement, the configuration of user interfaces for improved usability, the creation of environments for interacting with objects in the virtual world, and support for convergence services in the form of digital twins.

Clinical Application and Limitations of Myeloma Response Assessment and Diagnosis System (MY-RADS) (골수종 반응평가와 진단체계의 임상적용 및 제한점)

  • Dong Kyun Kim;Sung-Soo Park; Joon-Yong Jung
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.1
    • /
    • pp.51-74
    • /
    • 2023
  • Multiple myeloma, which is a proliferative disease of plasma cells that originate from a single clone, is the second most common hematologic malignancy following non-Hodgkin lymphoma. In the past, its diagnosis was made based on clinical findings (so-called "CRAB") and a skeletal survey using radiographs. However, since the implementation of the International Myeloma Working Group's revised guideline regarding the radiologic diagnosis of multiple myeloma, whole-body (WB) MRI has emerged to play a central role in the early diagnosis of multiple myeloma. Diffusion-weighted imaging and fat quantification using Dixon methods enable treatment response assessment by MRI. In keeping with the trend, a multi-institutional and multidisciplinary consensus for standardized image acquisition and reporting known as the Myeloma Response Assessment and Diagnostic System (MY-RADS) has recently been proposed. This review aims to describe the clinical application of WB-MRI based on MY-RADS in multiple myeloma, discuss its limitations, and suggest future directions for improvement.

Eosinophilia Is a Favorable Marker for Pneumonia in Chronic Obstructive Pulmonary Disease

  • Kang-Mo Gu;Jae-Woo Jung;Min-Jong Kang;Deog Kyeom Kim;Hayoung Choi;Young-Jae Cho;Seung Hun Jang;Chang-Hoon Lee;Yeon Mok Oh;Ji Sook Park;Jae Yeol Kim
    • Tuberculosis and Respiratory Diseases
    • /
    • v.87 no.4
    • /
    • pp.465-472
    • /
    • 2024
  • Background: Patients with chronic obstructive pulmonary disease (COPD) expressing eosinophilia experience slightly fewer episodes of community-acquired pneumonia (CAP), than those without eosinophilia. However, the severity and burden of hospitalized pneumonia patients with COPD involving eosinophilia have not been assessed. Methods: We evaluated the differences in clinical characteristics between patients with CAP and COPD with or without eosinophilia by a post hoc analysis of a prospective, multi-center, cohort study data. Results: Of 349 CAP patients with COPD, 45 (12.9%) had eosinophilia (blood eosinophil ≥300 cells/µL). Patients with eosinophilia had a lower sputum culture percentile (8.1% vs. 23.4%, p<0.05), a lower percentile of neutrophils (70.3% vs. 80.2%, p<0.05), reduced C-reactive protein levels (30.6 mg/L vs. 86.6 mg/L, p<0.05), and a lower pneumonia severity index score (82.5 vs. 90.0, p<0.05), than those without eosinophilia. The duration of antibiotic treatment (8.0 days vs. 10.0 days, p<0.05) and hospitalization (7.0 days vs. 9.0 days, p<0.05) were shorter in eosinophilic patients. The cost of medical care per day (256.4 US$ vs. 291.0 US$, p<0.05), cost for the medication (276.4 US$ vs. 349.9 US$, p<0.05), and cost for examination (685.5 US$ vs. 958.1 US$, p<0.05) were lower in patients with eosinophilia than those without eosinophilia. Conclusion: Eosinophilia serves as a favorable marker for the severity of pneumonia, health-care consumption, and cost of medical care in patients with CAP and COPD.

Effects of Encapsulation Layer on Center Crack and Fracture of Thin Silicon Chip using Numerical Analysis (봉지막이 박형 실리콘 칩의 파괴에 미치는 영향에 대한 수치해석 연구)

  • Choa, Sung-Hoon;Jang, Young-Moon;Lee, Haeng-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Recently, there has been rapid development in the field of flexible electronic devices, such as organic light emitting diodes (OLEDs), organic solar cells and flexible sensors. Encapsulation process is added to protect the flexible electronic devices from exposure to oxygen and moisture in the air. Using numerical simulation, we investigated the effects of the encapsulation layer on mechanical stability of the silicon chip, especially the fracture performance of center crack in multi-layer package for various loading condition. The multi-layer package is categorized in two type - a wide chip model in which the chip has a large width and encapsulation layer covers only the chip, and a narrow chip model in which the chip covers both the substrate and the chip with smaller width than the substrate. In the wide chip model where the external load acts directly on the chip, the encapsulation layer with high stiffness enhanced the crack resistance of the film chip as the thickness of the encapsulation layer increased regardless of loading conditions. In contrast, the encapsulation layer with high stiffness reduced the crack resistance of the film chip in the narrow chip model for the case of external tensile strain loading. This is because the external load is transferred to the chip through the encapsulation layer and the small load acts on the chip for the weak encapsulation layer in the narrow chip model. When the bending moment acts on the narrow model, thin encapsulation layer and thick encapsulation layer show the opposite results since the neutral axis is moving toward the chip with a crack and load acting on chip decreases consequently as the thickness of encapsulation layer increases. The present study is expected to provide practical design guidance to enhance the durability and fracture performance of the silicon chip in the multilayer package with encapsulation layer.

Morphological Adaptation of Zostera marina L. to Ocean Currents in Korea (한국산 거머리말(Zostera marina L.)의 해류에 대한 형태적 적응)

  • Lim, Dong-Ok;Yun, Jang-Tak;Han, Kyung-Shik
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.5
    • /
    • pp.431-438
    • /
    • 2009
  • The main purpose of this research is to prepare and provide basic materials for the propagational strategy of eelgrass by investigating on the morphological adaptation of Korean Zostera marina to ocean currents. An eelgrass plant mainly consists of rhizome, leaf sheath, leaves and roots. The rhizome is the horizontal stem of the plant that serves as the backbone from which the leaves and roots emerge. The leaf sheath is the bundle at the base of the leaves that holds the leaves together, protecting the meristem, the primary growth point of the shoot. Leaves originate from a meristem which is protected by a sheath at the actively growing end of the rhizome. As the shoot grows, the rhizome elongates, moving across or within the sediment, forming roots as it progresses. The aggregated leaves from the leaf sheath are found to have two cell layers on one side and multiple layers of airy tissues called aerenchyma on the other. The aerenchyma tissues are developed in multi-layered cell structures surrounding the veins which are formed in the leaf sheath. Generative shoots are made of rhizomes, which are circular or ovoidal, stem, and spathe and spadix. The transverse section of rhizome and the stem and central floral axis is found to be circular, ovoid and in the shape of convex respectively, and the vascular bundle, which is a part of transport system, has one large tube in the center and two small tubes on both sides. The layers of collenchyma cells numbered from 12 to 15 in the stem, and from 7 to 12 in the rhizome. The seed coat is composed of sclereids, small bundles of sclerenchyma tissues, which prevent the influx of sea water from the outside and help endure the environmental stress. In conclusion, alternative multi-layer structure in circular, convex type aggregated leaf base are interpreted to morphological adaption as doing tolerable elastic structure through movement of seawater. The generative shoots develop long slim stem and branches in circular or ovoidal shapes to minimize the adverse impacts of sea current, which can be interpreted as the plant's morphological adaptation to its environment.

Time-Lapse Crosswell Seismic Study to Evaluate the Underground Cavity Filling (지하공동 충전효과 평가를 위한 시차 공대공 탄성파 토모그래피 연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.25-30
    • /
    • 1998
  • Time-lapse crosswell seismic data, recorded before and after the cavity filling, showed that the filling increased the velocity at a known cavity zone in an old mine site in Inchon area. The seismic response depicted on the tomogram and in conjunction with the geologic data from drillings imply that the size of the cavity may be either small or filled by debris. In this study, I attempted to evaluate the filling effect by analyzing velocity measured from the time-lapse tomograms. The data acquired by a downhole airgun and 24-channel hydrophone system revealed that there exists measurable amounts of source statics. I presented a methodology to estimate the source statics. The procedure for this method is: 1) examine the source firing-time for each source, and remove the effect of irregular firing time, and 2) estimate the residual statics caused by inaccurate source positioning. This proposed multi-step inversion may reduce high frequency numerical noise and enhance the resolution at the zone of interest. The multi-step inversion with different starting models successfully shows the subtle velocity changes at the small cavity zone. The inversion procedure is: 1) conduct an inversion using regular sized cells, and generate an image of gross velocity structure by applying a 2-D median filter on the resulting tomogram, and 2) construct the starting velocity model by modifying the final velocity model from the first phase. The model was modified so that the zone of interest consists of small-sized grids. The final velocity model developed from the baseline survey was as a starting velocity model on the monitor inversion. Since we expected a velocity change only in the cavity zone, in the monitor inversion, we can significantly reduce the number of model parameters by fixing the model out-side the cavity zone equal to the baseline model.

  • PDF