• Title/Summary/Keyword: multi-cell system

Search Result 514, Processing Time 0.029 seconds

Effects of Non-Uniform Traffic Distribution on the Capacity of Reverse Link CDMA System

  • Cho, Choon-Geun;Ann, Jong-Hoon;Tchah, Kyun-Hyon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.12A
    • /
    • pp.1828-1835
    • /
    • 2000
  • In this paper, we analyzed the other-cell interference characteristics for various non-uniform traffic distributions and their effects on the capacity of multi-cell CDMA system. We consider three different traffic distributions, i.e., linear, exponential and Gaussian traffic distribution with distribution parameters. Changing the distribution parameter, we can obtain the center-focused distributions or uniform distributions for each model. From the results of other-cell interference calculation we can see that the other-cell interference decreases, as the user concentrates on the base station. Also using frequency reuse efficiency indicating the capacity reduction of a multi-cell system when compared to a single cell system, we evaluate the effect of traffic distribution on the reverse link CDMA capacity. For linear case, the capacity of multi-cell system is reduced to 0.637∼0.867 times that of single cell system. On the other hand, for both exponential and Gaussian cases, the capacity under a multi-cell environment is equal to 70∼100% of that under a single cell. Therefore, we conclude that the average capacity of multi-cell CDMA system are increased when users are likely to be at near the cell base station due to reduced total other-cell interference and decreased when users exist at near the cell edge regardless of traffic distribution models.

  • PDF

Effect of Specific Interaction of Multi-Ligands on the Specific Interaction between Particle and Cell (멀티 리간드의 특이적 상호작용이 입자-세포간 상호작용에 미치는 영향)

  • Yoon, Jung Hyun;Lee, Sei Young
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.94-101
    • /
    • 2022
  • Recent advancement of micro/nano technology enables the development of diverse micro/nano particle-based delivery systems. Due to the multi-functionality and engineerability, particle-based delivery system are expected to be a promising method for delivery to the target cell. Since the particle-based delivery system should be delivered to the various kinds of target cell, including the cardiovascular system, cancer cell etc., it is frequently decorated with multiple kinds of targeting molecule(s) to induce specific interaction to the target cell. The surface decorated molecules interact with the cell surface expressed molecule(s) to specifically form a firm adhesion. Thus, in this study, the probability of adhesion is estimated to predict the possibility to form a firm adhesion for the multi-ligand decorated particle-based delivery system.

Power Distribution Optimization of Multi-stack Fuel Cell Systems for Improving the Efficiency of Residential Fuel Cell (주택용 연료전지 효율 향상을 위한 다중 스택 연료전지 시스템의 전력 분배 최적화)

  • TAESEONG KANG;SEONGHYEON HAM;HWANYEONG OH;YOON-YOUNG CHOI;MINJIN KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.4
    • /
    • pp.358-368
    • /
    • 2023
  • The fuel cell market is expected to grow rapidly. Therefore, it is necessary to scale up fuel cells for buildings, power generation, and ships. A multi-stack system can be an effective way to expand the capacity of a fuel cell. Multi-stack fuel cell systems are better than single-stack systems in terms of efficiency, reliability, durability and maintenance. In this research, we developed a residential fuel cell stack and system model that generates electricity using the fuel cell-photovoltaic hybrid system. The efficiency and hydrogen consumption of the fuel cell system were calculated according to the three proposed power distribution methods (equivalent, Daisy-chain, and optimal method). As a result, the optimal power distribution method increases the efficiency of the fuel cell system and reduces hydrogen consumption. The more frequently the multi-stack fuel cell system is exposed to lower power levels, the greater the effectiveness of the optimal power distribution method.

Analysis for Performance Deviation of Individual Cells in a Multi-Cell Test System for Rapid-Screening of Electrode Materials in PEMFCs (고분자전해질 연료전지용 전극물질의 빠른 스크리닝을 위한 멀티셀 테스트 시스템에서 개별셀의 성능편차에 대한 분석)

  • Zhang, Yan;Lee, Ji-Jung;Park, Gyung-Se;Lee, Hong-Ki;Shim, Joong-Pyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.842-851
    • /
    • 2011
  • A multi-cell test system with 25 independent cells is used to test different electrode materials simultaneously for polymer electrolyte membrane fuel cells (PEMFCs). Twenty-five segmented membrane electrode assemblies (MEAs) having the same or different Pt-loading are prepared to analyze the performance deviation of cells in the multi-cell test system. Improvements in the multi-cell test system are made by ensuring that the system performs voltage sensing for the cells individually and inserting optimum gaskets between the MEAs and the graphite plates. The cell performances are improved and their deviations are significantly decreased by these modifications. The performance deviations changed according to various cell configurations because the operating conditions of the cells, such as the gas flow and concentration, differed. This cell system can be used to test multiple electrodes simultaneously because it shows relatively uniform performance under the same conditions as well as linear correlation with various catalyst loadings.

Development of Multi-flat Reflector Sun Tracking System for Sun Photocell Maximum Power Generation (태양전지 최대전력 발생을 위한 다 평면 반사경 태양추적시스템 개발)

  • Lee, Kang-Sin;Lee, Hyun-Seog;Yoo, Seok-Ju;Park, Wal-Seo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.67-72
    • /
    • 2011
  • Recently, photovoltaic generator system is widely extended by energy policy of the government. Add to this, for high efficiency of power generation per natural light unit area is needed to sun tracking system. And it is needed to condensed light generator for reducer of equipment expense. As method of solving this problem, this paper is developed multi-flat reflector sun tracking system for sun photocell maximum power generation. The system is consisted of multi-flat reflector and two axes machinery and sun location perceiver and AVR controller. GaAs 3J cell generated 6.75 times power more than silicon cell by times condensing light system. As a result, condensing light system of multi-flat reflector generated maximum power and showed reducing costs to photovoltaic generator.

A Study of Modeling PEM Fuel Cell System Using Multi-Variable Optimization Technique for Automotive Applications (다변수 최적화 기법을 이용한 자동차용 고분자 전해질형 연료전지 시스템 모델링에 관한 연구)

  • Kim, Han-Sang;Min, Kyoung-Doug;Jeon, Soon-Il;Kim, Soo-Whan;Lim, Tae-Won;Park, Jin-Ho
    • New & Renewable Energy
    • /
    • v.1 no.4 s.4
    • /
    • pp.43-48
    • /
    • 2005
  • This study presents the integrated modeling approach to simulate the proton exchange membrane [PEM] fuel cell system for vehicle application. The fuel cell system consisting of stack and balance of plant (BOP) was simulated with MATLAB/Simulink environment to estimate the maximum system power and investigate the effect of BOP component sizing on system performance and efficiency. The PEM fuel cell stack model was established by using a semi-empirical modeling. To maximize the net efficiency of fuel cell system, multi-variable optimization code was adopted. Using this method, the optimized operating values were obtained according to various system net power levels. The fuel cell model established was co-linked to AVL CRUISE, a vehicle simulation package. Through the vehicle simulation software, the fuel economy of fuel cell powered electric vehicle for two types of driving cycles was presented and compared. It is expected that this study can be effectively employed in the basic BOP component sizing and in establishing system operation map with respect to net power level of fuel cell system.

  • PDF

A Study of Modeling PEM Fuel Cell System Using Multi-Variable Optimization Technique for Automotive Applications (다변수 최적화 기법을 이용한 자동차용 고분자전해질형 연료전지 시스템 모델링에 관한 연구)

  • Kim, Han-Sang;Min, Kyoung-Doug;Jeon, Soon-Il;Kim, Soo-Whan;Lim, Tae-Won;Park, Jin-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.541-544
    • /
    • 2005
  • This study presents the integrated modeling approach to simulate the proton exchange membrane (PEM) fuel cell system for vehicle application. The fuel cell system consisting of stack and balance of plant (BOP) was simulated with MATLAB/Simulink environment to estimate the maximum system power and investigate the effect of BOP component sizing on system performance and efficiency. The PEM fuel cell stack model was established by using a semi-empirical modeling. To maximize the net efficiency of fuel cel1 system, multi-variable optimization code was adopted. Using this method the optimized operating values were obtained according to various system net power levels. The fuel cell model established was co-linked to AVL CRUISE, a vehicle simulation package. Through the vehicle simulation software, the fuel economy of fuel cell powered electric vehicle for two types of driving cycles was presented and compared. It is expected that this study tan be effectively employed in the basic BOP component sizing and in establishing system operation map with respect to net power level of fuel cell system.

  • PDF

An Integrated Shop Operation System for Multi-Cell Flexible Manufacturing Systems under Job Shop Environments (멀티 셀 유연생산환경을 위한 통합운용시스템)

  • Nam, Sung-Ho;Ryu, Kwang-Yeol;Shin, Jeong-Hoon;Kwon, Ki-Eok;Lee, Seok-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.386-394
    • /
    • 2012
  • Recent trends in the flexible manufacturing systems are morphing cell control for the shop-wide production operation system and providing the integrated operation and execution system together with vendor-specific FMC/FMS platform. In these requirements, the shop-floor level operation system plays a role of coordinating the control activity of each cell, and has to provide flexibility for the complexity of mixed operations of various cells. This paper suggests a system architecture for the mixed environments of multi-cells and job shop, its corresponding enabling technologies based on comparative studies with other related studies and commercialized systems. This approach includes a process definition model considering the integration with upper BOM-BOP and external service modules, and reconfigurable device-level interface which provides dynamic interconnections with machine tools and cell controllers. The function modules and their implementation results are also described to provide the feasibility of the proposed approaches as the flexible shop-floor operation system for the multi-cell environments.

Development of high precision multi arms robot system consist of two robot arms and multi sensors (복수개의 로보트와 다중센서를 이용한 정밀조립용 로보트 시스템 개발에 관한 연구)

  • Lim, Mee-Seub;Cho, Young-Jo;Lee, Joon-Soo;Park, Jeung-Min;Kim, Kwang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.422-424
    • /
    • 1992
  • In this paper, we are designed a hierachical system controller and builed a robot system for high precision assembly consisting in multi-arms and multi-sensor. For the control of a multi-arms robot system, the robot system are consisted of cell controller, station controller and device. The Operating System of a cell controller is VxWorks for real-time multi-processing. Using by C-language, we are proposed a multi-arms robot control language based a RCCL, and this control language is partially implemented and tested in multi-robot control system.

  • PDF

Up/Downlink Hybrid Inter-Cell Coordination Patterns of the TDD/MC-CDMA System, TDD/MC-CDMA

  • Han, Sang-Jin;Lee, Sung-Jin;Lee, Sang-Hoon;Gil, Gye-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.421-428
    • /
    • 2009
  • Inter-cell coordination has been an emerging issue for mitigating inter-cell interference in broadband wireless access networks such as IEEE802.16 and 3GPP LTE (Long Term Evolution). This paper proposes uplink/downlink hybrid inter-cell coordination patterns for a TDD (Time Division Duplex)/MC-CDMA (Multi-Carrier Code Division Multiple Access) system. For the performance analysis, closed forms of inter-cell interferences are derived when uplink and downlink transmissions coexist over a multi-cell environment. In the analysis, we find an optimal ratio of downlink transmit powers of BSs (Base Stations) based on the target outage probability and the performance according to ratios of uplink/downlink transmit powers of MSs (Mobile Stations)/BSs is explored. Our numerical results show that interference mitigation utilizing the characteristics of the uplink and downlink power ratio is very effective in improving system performance in terms of QoS.