• 제목/요약/키워드: multi-carriers

검색결과 99건 처리시간 0.021초

A Minimum Data-Rate Guaranteed Resource Allocation With Low Signaling Overhead in Multi-Cell OFDMA Systems

  • Kwon, Ho-Joong;Lee, Won-Ick;Lee, Byeong-Gi
    • Journal of Communications and Networks
    • /
    • 제11권1호
    • /
    • pp.26-35
    • /
    • 2009
  • In this paper, we investigate how to do resource allocation to guarantee a minimum user data rate at low signaling overhead in multi-cell orthogonal frequency division multiple access (OFDMA) wireless systems. We devise dynamic resource allocation (DRA) algorithms that can minimize the QoS violation ratio (i.e., the ratio of the number of users who fail to get the requested data rate to the total number of users in the overall network). We assume an OFDMA system that allows dynamic control of frequency reuse factor (FRF) of each sub-carrier. The proposed DRA algorithms determine the FRFs of the sub-carriers and allocate them to the users adaptively based on inter-cell interference and load distribution. In order to reduce the signaling overhead, we adopt a hierarchical resource allocation architecture which divides the resource allocation decision into the inter-cell coordinator (ICC) and the base station (BS) levels. We limit the information available at the ICC only to the load of each cell, that is, the total number of sub-carriers required for supporting the data rate requirement of all the users. We then present the DRA with limited coordination (DRA-LC) algorithm where the ICC performs load-adaptive inter-cell resource allocation with the limited information while the BS performs intra-cell resource allocation with full information about its own cell. For performance comparison, we design a centralized algorithm called DRA with full coordination (DRA-FC). Simulation results reveal that the DRA-LC algorithm can perform close to the DRA-FC algorithm at very low signaling overhead. In addition, it turns out to improve the QoS performance of the cell-boundary users, and achieve a better fairness among neighboring cells under non-uniform load distribution.

PCS 공용 기지국 시스템 개발 (Development of Common PCS Base Station System)

  • 황선호;박준현;김훈석
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2001년도 춘계종합학술대회
    • /
    • pp.214-217
    • /
    • 2001
  • 본 연구에서는 PCS 사업자 기지국의 RF부와 안테나를 통합한 하나의 공용 기지국으로 PCS 3사의 서비스를 제공할 수 있는 PCS 공용 기지국 시스템의 구현방안에 대해서 연구하고 제안하였으며, 구현된 시스템에 대한 무선 성능 평가 데이터를 제시하였다. 본 연구에서 PCS 공용 기지국을 구현하기 위해 다중 채널 결합기(multi-channel combiner), 듀플렉서, LNA, 전력 분배기(power divider), 전송라인(feeder line), 공용 안테나 등으로 이루어진 기지국 공용화 모듈을 설계 제작하여 PCS 사업자 기지국에 적용하였다. PCS 공용 기지국에 대한 FER, 호 통계, Ec/Io, 수신전력 등의 주요 무선 성능 파라미터를 대상으로 하는 성능 평가 결과, PCS 3사의 커버리지와 신호 품질이 PCS 사업자 기지국과 동등하다는 것을 확인하였다. PCS 사업자는 공용 기지국의 설치를 통해 설치비 및 운용비를 크게 경감할 수 있을 것으로 생각되고 본 연구의 결과는 효율적이고 경제적인 IMT-2000 서비스망 구축을 위한 기초자료로 활용될 수 있을 것이다.

  • PDF

An OFDMA-Based Next-Generation Wireless Downlink System Design with Hybrid Multiple Access and Frequency Grouping Techniques

  • Lee Won-Ick;Lee Byeong Gi;Lee Kwang Bok;Bahk Saewoong
    • Journal of Communications and Networks
    • /
    • 제7권2호
    • /
    • pp.115-125
    • /
    • 2005
  • This paper discusses how to effectively design a next-generation wireless communication system that can possibly provide very high data-rate transmissions and versatile quality services. In order to accommodate the sophisticated user requirements and diversified user environments of the next-generation systems, it should be designed to take an efficient and flexible structure for multiple access and resource allocation. In addition, the design should be optimized for cost-effective usage of resources and for efficient operation in a multi-cell environment. As orthogonal frequency division multiple access (OFDMA) has turned out in recent researches to be one of the most promising multiple access techniques that can possibly meet all those requirements through efficient radio spectrum utilization, we take OFDMA as the basic framework in the next-generation wireless communications system design. So, in this paper, we focus on introducing an OFDMA-based downlink system design that employs the techniques of hybrid multiple access (HMA) and frequency group (FG) in conjunction with intra-frequency group averaging (IFGA). The HMA technique combines various multiple access schemes on the basis of OFDMA system, adopting the multiple access scheme that best fits to the given user condition in terms of mobility, service, and environment. The FG concept and IFGA technique help to reduce the feedback overhead of OFDMA system and the other-cell interference (OCI) problem by grouping the sub-carriers based on coherence band-widths and by harmonizing the channel condition and OCI of the grouped sub-carriers.

MIMO OFDM 시스템을 위한 채널 응답 미러링을 이용한 DFT기반 채널 추정 기법 (DFT-Based Channel Estimation with Channel Response Mirroring for MIMO OFDM Systems)

  • 이종협;강성진;노우영;오지명
    • 한국군사과학기술학회지
    • /
    • 제24권6호
    • /
    • pp.655-663
    • /
    • 2021
  • In this paper, DFT-Based channel estimation with channel response mirroring is proposed and analyzed. In General, pilot symbols for channel estimation in MIMO(Multi-Input Multi-Output) OFDM(Orthogonal Frequency-Division Multiplexing) Systems have a diamond shape in the time-frequency plane. An interpolation technique to estimate the channel response of sub-carriers between reference symbols is needed. Various interpolation techniques such as linear interpolation, low-pass filtering interpolation, cubic interpolation and DFT interpolation are employed to estimate the non-pilot sub-carriers. In this paper, we investigate the conventional DFT-based channel estimation for noise reduction and channel response interpolation. The conventional method has performance degradation by distortion called "edge effect" or "border effect". In order to mitigate the distortion, we propose an improved DFT-based channel estimation with channel response mirroring. This technique can efficiently mitigate the distortion caused by the DFT of channel response discontinuity. Simulation results show that the proposed method has better performance than the conventional DFT-based channel estimation in terms of MSE.

Designing Optimal Pulse-Shapers for Ultra-Wideband Radios

  • Luo, Xiliang;Yang , Liuqing;Giannakis, Georgios-B.
    • Journal of Communications and Networks
    • /
    • 제5권4호
    • /
    • pp.344-353
    • /
    • 2003
  • Ultra-wideband (UWB) technology is gaining increasing interest for its potential application to short-range indoor wireless communications. Utilizing ultra-short pulses, UWB baseband transmissions enable rich multipath diversity, and can be demodulated with low complexity receivers. Compliance with the FCC spectral mask, and interference avoidance to, and from, co-existing narrow-band services, calls for judicious design of UWB pulse shapers. This paper introduces pulse shaper designs for UWB radios, which optimally utilize the bandwidth and power allowed by the FCC spectral mask. The resulting baseband UWB systems can be either single-band, or, multi-band. More important, the novel pulse shapers can support dynamic avoidance of narrow-band interference, as well as efficient implementation of fast frequency hopping, without invoking analog carriers.

Clipping Distortion Suppression of Directly Modulated Multi-IF-over-Fiber Mobile Fronthaul Links Using Shunt Diode Predistorter

  • Han, Changyo;Cho, Seung-Hyun;Sung, Minkyu;Chung, Hwan Seok;Lee, Jong Hyun
    • ETRI Journal
    • /
    • 제38권2호
    • /
    • pp.227-234
    • /
    • 2016
  • Herein, we demonstrate clipping distortion suppression of directly modulated multi-IF-over-fiber links using a simple shunt diode predistorter. The dynamic range of a directly modulated analog fiber optic link is limited by nonlinear distortions caused by laser-diode clipping. We investigate the link performance in the context of carrie-to-noise and distortion ratio (CNDR) and error vector magnitude (EVM) requirements when supporting LTE-A services. We also design an analog predistorter with a shunt-diode structure, and demonstrate experimentally that the predistorter has the ability to suppress clipping-induced third-order intermodulation distortions of the link by at most 14 dB. It also improves the CNDR and EVM of the 4-IF-multiplexed LTE-A carriers by 7 dB and 2.9%, respectively.

Numerical Modeling and Simulations of Electrical Characteristics of Multi-layer Organic Light Emitting Diodes

  • Lee, Hyun-Jung;Lee, Yong-Soo;Park, Jae-Hoon;Choi, Jong-Sun
    • Journal of Information Display
    • /
    • 제8권3호
    • /
    • pp.11-16
    • /
    • 2007
  • Theoretical simulations of spatial distribution of charge carriers and recombination rate, and J-V characteristics of the multi-layer organic light emitting diodes are carried out. Drift-diffusion current transport, field-dependent carrier mobility, exponential and Gaussian trap distribution, and Langevin recombination models are included in this computer model. The simulated results show good agreement with the experimental data confirming the validity of the physical models for organic light emitting diodes.

간섭제거기를 갖는 이중전송률 MC/MC-CDMA 시스템의 성능분석 (Performance Analysis of Dualrate Multi-code/ Multi-carrier CDMA System with Interference Canceller)

  • 김남선
    • 한국산학기술학회논문지
    • /
    • 제10권4호
    • /
    • pp.830-837
    • /
    • 2009
  • 본 논문에서는 멀티코드 CDMA와 멀티캐리어 CDMA를 결합한 멀티코드/멀티캐리어 CDMA(MC/MC CDMA) 시스템을 분석한다. MC/MC CDMA 시스템은 멀티코드를 사용해서 다중 전송률 서비스를 제공하며 멀티캐리어를 이용하여 높은 데이터전송을 가능하게 하는 방식으로 주파수 선택적 페이딩, 협대역 간섭신호의 제거 및 높은 스펙트럼 효율을 제공한다. 본 연구에서, 송신단에서는 OVSF 코드를 확산부호로 사용하여 사용자들의 전송률에 따라 그룹화하며, 수신단에서 코드 그룹화 간섭제거 기를 사용하여 그룹간 간섭을 제거하는 시스템을 구성한다. 제안된 수신기는 간섭을 일으키는 다른 사용자에 대한 코드, 데이터 및 진폭 정보 등을 요구하지 않으므로 비교적 적은 복잡도를 갖는다. 이중전송률 MC/MC CDMA 시스템의 성능을 분석하였으며 간섭제거기를 사용하여 성능이 향상됨을 분석했다.

A Modified Delay and Doppler Profiler based ICI Canceling OFDM Receiver for Underwater Multi-path Doppler Channel

  • Catherine Akioya;Shiho Oshiro;Hiromasa Yamada;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • 제23권7호
    • /
    • pp.1-8
    • /
    • 2023
  • An Orthogonal Frequency Division Multiplexing (OFDM) based wireless communication system has drawn wide attention for its high transmission rate and high spectrum efficiency in not only radio but also Underwater Acoustic (UWA) applications. Because of the narrow sub-carrier spacing of OFDM, orthogonality between sub-carriers is easily affected by Doppler effect caused by the movement of transmitter or receiver. Previously, Doppler compensation signal processing algorithm for Desired propagation path was proposed. However, other Doppler shifts caused by delayed Undesired signal arriving from different directions cannot be perfectly compensated. Then Receiver Bit Error Rate (BER) is degraded by Inter-Carrier-Interference (ICI) caused in the case of Multi-path Doppler channel. To mitigate the ICI effect, a modified Delay and Doppler Profiler (mDDP), which estimates not only attenuation, relative delay and Doppler shift but also sampling clock shift of each multi-path component, is proposed. Based on the outputs of mDDP, an ICI canceling multi-tap equalizer is also proposed. Computer simulated performances of one-tap equalizer with the conventional Time domain linear interpolated Channel Transfer Function (CTF) estimator, multi-tap equalizer based on mDDP are compared. According to the simulation results, BER improvement has been observed. Especially, in the condition of 16QAM modulation, transmitting vessel speed of 6m/s, two-path multipath channel with direct path and ocean surface reflection path; more than one order of magnitude BER reduction has been observed at CNR=30dB.

AKARI OBSERVATIONS OF THE INTERSTELLAR MEDIUM

  • Onaka, Takashi
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.187-193
    • /
    • 2012
  • AKARI has 4 imaging bands in the far-infrared (FIR) and 9 imaging bands that cover the near-infrared (NIR) to mid-infrared (MIR) contiguously. The FIR bands probe the thermal emission from sub-micron dust grains, while the MIR bands observe emission from stochastically-heated very small grains and the unidentified infrared (UIR) band emissions from carbonaceous materials that contain aromatic and aliphatic bonds. The multi-band characteristics of the AKARI instruments are quite efficient to study the spectral energy distribution of the interstellar medium, which always shows multi-component nature, as well as its variations in the various environments. AKARI also has spectroscopic capabilities. In particular, one of the onboard instruments, Infrared Camera (IRC), can obtain a continuous spectrum from 2.5 to $13{\mu}m$ with the same slit. This allows us to make a comparative study of the UIR bands in the diffuse emission from the 3.3 to $11.3{\mu}m$ for the first time. The IRC explores high-sensitivity spectroscopy in the NIR, which enables the study of interstellar ices and the UIR band emission at $3.3-3.5{\mu}m$ in various objects. Particularly, the UIR bands in this spectral range contain unique information on the aromatic and aliphatic bonds in the band carriers. This presentation reviews the results of AKARI observations of the interstellar medium with an emphasis on the observations of the NIR spectroscopy.