• Title/Summary/Keyword: multi-block PCA

Search Result 3, Processing Time 0.016 seconds

Multi-block PCA for Sensor Fault Detection and Diagnosis of City Gas Network (도시가스 배관망의 고장 탐지 및 진단을 위한 다중블록 PCA 적용 연구)

  • Yeon-ju Baek;Tae-Ryong Lee;Jong-Seun Kim;Hong-Cheol Ko
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.2
    • /
    • pp.38-46
    • /
    • 2024
  • The city gas pipeline network is characterized by being widely distributed and hierarchically connected in a complex manner over a wide area. In order to monitor the status of the widely distributed network pressures with high precision, Multi-block PCA(MBPCA) is recommended. However, while MBPCA has excellent performance in identifying faulty sensors as the number of sensors increases, the fault detection performance deteriorates, and also there is a problem that the model needs to be updated entirely even if minor changes occur. In this study, we developed fault detectability index and fault identificability index to determine the effectiveness of MBPCA application block by block. Based on these indices, we distinguished MBPCA and PCA blocks and developed a fault detection and diagnostic system for the city gas pipeline network of Haean Energy Co., Ltd., and were able to solve the problems that arise when there are many sensors.

A Multi-Resolution Distance Measure Using Grey Block Distance Algorithms for Principal Component Analysis (주성분분석에서의 제안된 GBD 알고리즘을 이용한 다중해상도 거리 측정)

  • Hong, Jun-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2671-2673
    • /
    • 2002
  • 본 논문에서는 주성분분석(principal component analysis; 이하 PCA)기법을 이용, 이차원 영상을 분류하여 다중해상도에서 기존의 그레이 블록 거리(grey block distance; GBD, 이하 GBD)알고리즘과 비교하여 이차원 영상간의 상대적 식별을 더 용이하게 하기 위한 새로운 GBD 알고리즘 방법을 제안한다. 이 제시된 방법은 다중해상도에서 기존의 GBD 알고리즘과 비교해서 영상이 급격히 변화하는 부분의 정보를 잃지 않게 개선할 수 있었다. 모의 실험 결과로부터 기존의 GBD 알고리즘에 비하여 상대적 식별이 더 용이함을 확인하였다.

  • PDF

A Multi-Resolution Distance Measure Using Proposed Grey Block Distance Algorithms for Principal Component Analysis and Kurtosis (주성분분석과 첨도에서의 제안된 GBD 알고리즘을 이용한 다중해상도 거리 측정)

  • Hong, Jun-Sik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11a
    • /
    • pp.571-574
    • /
    • 2003
  • 본 논문에서는 다중해상도에서 기존의 그레이 블록 거리(grey biock distance; GBD, 이하 GBD)알고리즘과 비교하여 이차원 영상간의 상대적 식별을 더 용이하게 하기 위한 새로운 GBD 알고리즘 방법을 제안한다. 이 제시된 방법은 다중해상도에서 기존의 GBD 알고리즘과 비교해서 영상이 급격히 변화하는 부분의 정보를 잃지 않게 개선할 수 있었다. 모의 실험 예로서 주성분분석(principal component analysis; 이하 PCA) 기법을 적용하여 유용성과 제안된 방법이 이전의 연구보다 k가 감소할 때 편차는 줄어들어 좋은 영상 분류 특징을 보였으며, 첨도(Kurtosis)에서의 영상간의 거리 측정 결과 첨도가 가지고 있는 특성에 의해 영상 분류 시 매우 민감한 반응을 나타내어 k가 4까지만 블록을 분할 할 수 있음을 모의 실험을 통하여 확인할 수 있었다.

  • PDF