• 제목/요약/키워드: multi-axle loads

Search Result 10, Processing Time 0.036 seconds

Stress Distribution in Concrete Pavements under Multi-Axle Vehicle Loads Obtained Using Transformed Field Domain Analysis (변환영역 해석법을 통한 콘크리트 도로 포장의 다축 차량 하중에 대한 응력 분포 분석)

  • Kim, Seong-Min;Shim, Jae-Soo;Park, Hee-Beom
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.695-702
    • /
    • 2006
  • The stress distribution and the critical stresses in concrete pavements were analyzed using formulations in the transformed field domains when dual-wheel single-, tandem-, and tridem-axle loads were applied. First the accuracy of the transformed field domain analysis results was verified by comparing with the finite element analysis results. Then, the stress distribution along the longitudinal and transverse directions was investigated, and the effects of slab thickness, concrete elastic modulus, and foundation stiffness on the stress distribution were studied. The effect of the tire contact pressure related to the tire print area was also studied, and the location of the critical stress occurrence in concrete pavements was finally investigated. From this study, it was found that the critical concrete stress due to multi-axle loads became larger as the concrete elastic modulus increased, the slab thickness increased, and the foundation stiffness decreased. The number of axles did not tend to affect the critical stress ratio except for a small foundation stiffness value with which the critical stress ratio became significantly larger as the number of axles increased. The critical stress location in the transverse direction tended to move into the interior as the tire contact pressure increased, the concrete elastic modulus increased, the slab thickness increased, and the foundation stiffness decreased. The critical stress location in the longitudinal direction was under the axle for single- and tandem-axle loads, but for tridem-axle loads, it tended to move under the middle axle from the outer axles as the concrete elastic modulus and/or slab thickness increased and the foundation stiffness decreased.

Stress Distribution of Concrete Pavements under Multi-Axle Vehicle Loads Applied at Pavement Edges (모서리부 차량 다축하중에 의한 콘크리트 도로 포장의 응력 분포 특성)

  • Kim, Seong-Min;Cho, Byoung-Hooi;Lee, Sang-Hoon
    • International Journal of Highway Engineering
    • /
    • v.8 no.4 s.30
    • /
    • pp.13-24
    • /
    • 2006
  • The stresses in concrete pavement systems are larger when vehicle loads are applied at pavement edges, and these large stresses significantly affect the behavior and performance of pavements. Therefore, in this study, the stress distribution and the critical stresses in concrete pavements were investigated using a finite element model when dual-wheel single-, tandem-, and tridem-axle loads were applied at pavement edges. First, the stress distribution along the longitudinal and transverse directions was analyzed, and then the effects of slab thickness, concrete elastic modulus, and foundation stiffness on the stress distribution were investigated. The effect of the tire contact pressure related to the tire print area was also studied. The location of the critical stress occurrence in concrete pavements was finally investigated. From this study, it was found that the critical concrete stress due to edge loads became larger as the concrete elastic modulus increased, the slab thickness increased, and the foundation stiffness decreased. The effect of the tire contact pressure on the critical stress was clear as the slab thickness became smaller. The critical stress location in the transverse direction was independent of the concrete elastic modulus and the foundation stiffness; however, it moved into the interior as the slab thickness increased. The critical stress location in the longitudinal direction was under the axle for single- and tandem-axle loads, but for tridem-axle loads, it tended to move under the middle axle from the outer axles as the concrete elastic modulus and/or slab thickness increased and the foundation stiffness decreased.

  • PDF

Behavior of Overlaid Concrete Pavements under Multi-Axle Vehicle Loads Obtained Using Transformed Field Domain Analysis (변환영역 해석법을 이용한 덧씌우기 된 콘크리트 도로 포장의 다축차륜하중에 대한 거동 분석)

  • An, Zu-Og;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.9 no.2 s.32
    • /
    • pp.63-76
    • /
    • 2007
  • The transformed field domain analysis method was developed in this study to investigate the aspects of the stress distribution in overlaid concrete pavement systems under multi-axle vehicle loads. The overlay was assumed to be perfectly bonded or perfectly unbonded to the existing concrete pavement. The loads considered included the dual tired single-axle, tandem-axle, and tridem-axle loads, and the effects of the overlay's thickness, elastic modulus, and Poisson's ratio on the stress distribution were investigated. Details of the analysis method in the transformed field domain to analyze the overlaid pavement was described in this paper and the analysis results were verified by comparing with those obtained using the finite element method. From the analysis, it was found that the maximum tensile stress in the existing slab decreased as the overlay's thickness, elastic modulus, and Poisson's ratio increased, and the bonded overlay showed more significant effects than the unbonded one. The overlay's Poisson's ratio did not much affect the stresses, and the features of the maximum stress reduction in the existing slab due to the increase of the thickness, elastic modulus, and Poisson's ratio of the overlay were investigated. The effects of the number of axles on the stress distribution and the maximum stress were also investigated.

  • PDF

Relationship between Concrete Pavement Stresses under Multi-Axle Interior and Edge Loads (중앙부와 모서리부 다축 차량 하중에 의한 콘크리트 도로포장의 응력 상관관계)

  • Kim Seong-Min;Cho Byoung-Hooi;Ryu Sung-Woo
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.143-153
    • /
    • 2006
  • The differences in the stress distribution and the critical stresses in concrete pavement systems were analyzed when the dual-wheel single-, tandem-, and tridem-axle loads were applied at the interior and the edge of the pavement. The effects of the concrete elastic modulus, slab thickness, foundation stiffness, and tire contact pressure were investigated. The stresses under the interior loads were calculated using the transformed field domain analysis and stresses under the edge loads were obtained using the finite element method. The critical stresses under the interior and the edge loads were compared with respect to various parameters and the equations to predict the ratio between the stresses under the edge and the interior loads were developed and verified. From this study, it was found that the trends of the changes in the critical concrete stresses under the interior and the edge loads were very similar and the critical stress locations under those loads were identical. The critical stress ratio, which was obtained by dividing the critical stress under the edge loads into that under the interior loads, decreased with increasing the number of axles. That ratio became larger as the concrete elastic modulus increased, the slab thickness increased, the foundation stiffness decreased, and the tire contact pressure increased.

  • PDF

Estimation of Reinforced Roadbed Thickness based on Experimental Equation (노반재료의 소성침하 예측식을 이용한 강화노반 두께 산정)

  • Shin, Eun-Chul;Yang, Hee-Saeng;Choi, Chan-Yong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1747-1755
    • /
    • 2008
  • Design of the reinforced roadbed thickness is concerned with safe operation of trains at specified levels of speed, axle load and tonnage. There are two methods for evaluating it. One is using an experimental equation and the other is using elastic theory with considering axle load, material properties of subsoils and allowable elastic settlement. Multi-layered theory is used to determine reinforced roadbed thickness by RTRI. Although their reinforced roadbed thickness is designed with an objective of achieving a minimum standard 2.5mm of settlement on the subgrade surface, it is hardly applied to real design. Li(1994) has suggested the experimental model which design approach is to limit plastic strain and deformations for the design period. It is worth due to adopting soil equivalent number of repeated load application. Moreover, it has been a more advanced method than existing design methods because including resilient modulus of subsoil beneath track, soil deviator stress caused by train axle loads and MGT. In this paper, it is analyzed under domestic track conditions to estimate the reinforced roadbed thickness with different soil types.

  • PDF

Internal Property and Stochastic Deterioration Modeling of Total Pavement Condition Index for Transportation Asset Management (도로자산관리를 위한 포장종합평가지수의 속성과 변화과정의 모델링)

  • HAN, Daeseok;DO, Myungsik;KIM, Booil
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.1-11
    • /
    • 2017
  • PURPOSES : This study is aimed at development of a stochastic pavement deterioration forecasting model using National Highway Pavement Condition Index (NHPCI) to support infrastructure asset management. Using this model, the deterioration process regarding life expectancy, deterioration speed change, and reliability were estimated. METHODS : Eight years of Long-Term Pavement Performance (LTPP) data fused with traffic loads (Equivalent Single Axle Loads; ESAL) and structural capacity (Structural Number of Pavement; SNP) were used for the deterioration modeling. As an ideal stochastic model for asset management, Bayesian Markov multi-state exponential hazard model was introduced. RESULTS:The interval of NHPCI was empirically distributed from 8 to 2, and the estimation functions of individual condition indices (crack, rutting, and IRI) in conjunction with the NHPCI index were suggested. The derived deterioration curve shows that life expectancies for the preventive maintenance level was 8.34 years. The general life expectancy was 12.77 years and located in the statistical interval of 11.10-15.58 years at a 95.5% reliability level. CONCLUSIONS : This study originates and contributes to suggesting a simple way to develop a pavement deterioration model using the total condition index that considers road user satisfaction. A definition for level of service system and the corresponding life expectancies are useful for building long-term maintenance plan, especially in Life Cycle Cost Analysis (LCCA) work.

Application for a BWIM Algorithm Using Density Estimation Function and Average Modification Factor in The Field Test (밀도추정함수와 평균보정계수를 이용한 BWIM 알고리즘의 현장실험 적용)

  • Han, Ah Reum Sam;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.70-78
    • /
    • 2011
  • The paper aims at developing a more reliable and accurate BWIM(Bridge Weigh-In-Motion) algorithm using measured strain data and examining its efficiency with various tests on bridges. It proposes a BWIM algorithm using density estimation function and average modification factor for moment-strain relationship. Density estimation function has been proved to be reliably applied when multiple axle loads are estimated. An average modification factor is applied to minimize overall error that can be encountered between theoretically computed moments and measured strains at multiple locations in a bridge. The developed algorithm has been successfully examined through numerical simulations, laboratory tests, and also by field tests on a multi-girder composite bridge.

Evaluation of Impact Factor in Composite Cable-Stayed Bridges under Reliability-based Live Load Model (신뢰도 기반 활하중모델에 의한 강합성 사장교의 충격계수 평가)

  • Park, Jae Bong;Park, Yong Myung;Kim, Dong Hyun;Lee, Jong Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.335-346
    • /
    • 2013
  • AASHTO LRFD and Korean Bridge Design Code (Limit State Design) specify to consider Truck and Lane load simultaneously determined from reliability-based live load model, and impact shall be applied to the truck load while it shall not be applied to the lane load. In this paper, vehicle-bridge interaction analysis under moving truck and lane loads were performed to estimate impact factor of the cables and girders for the selected multi-cable-stayed composite bridges with 230m, 400m and 540m main span. A 6-d.o.f. vehicle was used for truck load and a series of single-axle vehicles was applied to simulate equivalent lane load. The effect of damping ratio on the impact factor was estimated and then the essential parameters to impact factor, i.e., road surface roughness and vehicle speed were considered. The road surface roughness was randomly generated based on ISO 8608 and it was applied to the truck load only in the vehicle-bridge interaction analysis. The impact factors evaluated from dynamic interaction analysis were also compared with those by the influence line method that is currently used in design practice to estimate impact factor in cable-stayed bridge.

Road Maintenance Planning with Traffic Demand Forecasting (장래교통수요예측을 고려한 도로 유지관리 방안)

  • Kim, Jeongmin;Choi, Seunghyun;Do, Myungsik;Han, Daeseok
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.47-57
    • /
    • 2016
  • PURPOSES : This study aims to examine the differences between the existing traffic demand forecasting method and the traffic demand forecasting method considering future regional development plans and new road construction and expansion plans using a four-step traffic demand forecast for a more objective and sophisticated national highway maintenance. This study ultimately aims to present future pavement deterioration and budget forecasting planning based on the examination. METHODS : This study used the latest data offered by the Korea Transport Data Base (KTDB) as the basic data for demand forecast. The analysis scope was set using the Daejeon Metropolitan City's O/D and network data. This study used a traffic demand program called TransCad, and performed a traffic assignment by vehicle type through the application of a user equilibrium-based multi-class assignment technique. This study forecasted future traffic demand by verifying whether or not a realistic traffic pattern was expressed similarly by undertaking a calibration process. This study performed a life cycle cost analysis based on traffic using the forecasted future demand or existing past pattern, or by assuming the constant traffic demand. The maintenance criteria were decided according to equivalent single axle loads (ESAL). The maintenance period in the concerned section was calculated in this study. This study also computed the maintenance costs using a construction method by applying the maintenance criteria considering the ESAL. The road user costs were calculated by using the user cost calculation logic applied to the Korean Pavement Management System, which is the existing study outcome. RESULTS : This study ascertained that the increase and decrease of traffic occurred in the concerned section according to the future development plans. Furthermore, there were differences from demand forecasting that did not consider the development plans. Realistic and accurate demand forecasting supported an optimized decision making that efficiently assigns maintenance costs, and can be used as very important basic information for maintenance decision making. CONCLUSIONS : Therefore, decision making for a more efficient and sophisticated road management than the method assuming future traffic can be expected to be the same as the existing pattern or steady traffic demand. The reflection of a reliable forecasting of the future traffic demand to life cycle cost analysis (LCCA) can be a very vital factor because many studies are generally performed without considering the future traffic demand or with an analysis through setting a scenario upon LCCA within a pavement management system.