• Title/Summary/Keyword: multi type ionizer

Search Result 2, Processing Time 0.018 seconds

Development of Multi-Type Soft X-ray Ionizer using Radiation Dose Overlapped Effect (선량 중첩을 이용한 멀티형 연 X-선 정전기 제거장치의 개발)

  • Lee, Su Hwan;Lee, Dong Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.28-31
    • /
    • 2018
  • In display and semi-conductor manufacturing process, there are numerous unstable factors such as particle concentration, minimal vibration, changes in magnetic field, or electrostatic that becomes an issue to be managed and controlled. In the recent, X-ray ionization is widely used that is neutralized by separating air or gas molecules in the area where the static must be resolved. The mono-type of X-ray ionizer was not capable to be used in $8^{th}$ generation panels manufacturing plant due to its insufficient ionizing coverage since the panel itself is approximately in $2m{\times}3m$. To resolve the current problem, the development of new type called, "Multi-type X-ray ionizer" has resulted in covering enough ionizing space in $8^{th}$ generation panels industry. Comparing mono and multi types with MCNPX code simulation, the multi one indicates more X-ray flux, efficiency, and ionization performance in comparison with either a mono-type or multi-type in array format. In addition, the ionizing efficiency of overlapping area with multi-type showed 30% higher effectiveness rate as to the ordinary mono-type.

Dust Collection Characteristics of Multi-layer Multi-stage Porous Plate System with Ionizer and Dielectric-substance (이오나이저 및 유전체 방식을 도입한 다층 다단 다공성 플레이트 시스템의 집진특성)

  • Yoa, Seok-Jun
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.63-72
    • /
    • 2013
  • The main purpose of this study is to analyze the collection characteristics of multi-layer multi-stage porous plate system with ionizer and dielectric-substance experimentally. The experiment is carried out to analyze the characteristics of pressure drop and collection efficiency for the present system with experimental parameters such as applied voltage, inlet velocity, stage number and inlet particle concentration, etc. In results, for multi-layer multi-stage porous plate system of inflow type, at 5 stage and $v_{in}$=2.58 m/s, the pressure drop becomes lower 15 $mmH_2O$ as 95 $mmH_2O$ than that of non-inflow type system. It is estimated that for the present system with ionizer and dielectric-substance, the collection efficiency represents 98.5% showing higher 5.2% comparing to that of multi-layer multi-stage porous plate system without ionizer and dielectric-substance at 5 stage, $v_{in}$=2.58 m/s and inlet concentration $3g/m^3$(fly ash).