• Title/Summary/Keyword: multi forming

Search Result 504, Processing Time 0.03 seconds

Modeling of AA5052 Sheet Incremental Sheet Forming Process Using RSM-BPNN and Multi-optimization Using Genetic Algorithms (반응표면법-역전파신경망을 이용한 AA5052 판재 점진성형 공정변수 모델링 및 유전 알고리즘을 이용한 다목적 최적화)

  • Oh, S.H.;Xiao, X.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.125-133
    • /
    • 2021
  • In this study, response surface method (RSM), back propagation neural network (BPNN), and genetic algorithm (GA) were used for modeling and multi-objective optimization of the parameters of AA5052-H32 in incremental sheet forming (ISF). The goal of optimization is to determine the maximum forming angle and minimum surface roughness, while varying the production process parameters, such as tool diameter, tool spindle speed, step depth, and tool feed rate. A Box-Behnken experimental design (BBD) was used to develop an RSM model and BPNN model to model the variations in the forming angle and surface roughness based on variations in process parameters. Subsequently, the RSM model was used as the fitness function for multi-objective optimization of the ISF process the GA. The results showed that RSM and BPNN can be effectively used to control the forming angle and surface roughness. The optimized Pareto front produced by the GA can be utilized as a rational design guide for practical applications of AA5052 in the ISF process

Study on the Shear and Forming Behavior of Chain Stitched Multi-axial Warp Knitted Fabric Preform (Chain stitch 다축경편물의 전단 및 성형 거동에 관한 연구)

  • Lee, Ji-Seok;Hong, Seok-Jin;Yu, Woong-Ryeol;Kang, Tae-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.107-110
    • /
    • 2005
  • In this study we investigated the shear and forming behavior of chain stitched multi-axial warp knitted fabric preform, so called non-crimp fabric (NCF). The picture frame test was performed to characterize the shear behavior of NCF and also provide material properties for the numerical simulation of its deformation behavior. The forming behavior of NCF with chain stitch were investigated using hemispherical forming tools. The experimental results show that processing conditions such as blank holder force (BHF) and preform shape are crucial to determining the forming behavior of NCF. For instance, an asymmetric formed shape, which is due to the stitches introduced to NCF, turns into a symmetric one as BHF increases. Furthermore the in-plane and out-of buckling (wrinkle), the severance of which were quantified using image processing method, decreases significantly as BHF increases.

  • PDF

A Study on the shape Design of the Forward Forming Region in Cross Rolling of Multi-Step Shaft (다단 샤프트 제조용 크로스롤 금형 선단부의 형상설계에 관한 연구)

  • 김익삼
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.178-187
    • /
    • 1999
  • The Cross rolling between flat jaws, as a kind of hot forging, is the forming method to make the axisymmetric multi-step shaft by its rotation and pressure between flat jaws which move in opposite direction. The purpose of this study is to propose the optimal geometric data for shape development of the forward forming region. All data described on this paper are quantified by experiment from initial shape design to final shape development. As the result, proper geometric data are proved that lenth of the first forming area in the forward forming region is 1.5 times larger than circumference of work-piece and the progress angle changes 3 times smoothly.

  • PDF

Evaluation of Forming Limits of Automotive Muti-phase Steel Sheets (자동차용 다상복합조직강판의 성형한계 평가)

  • Lee, S.Y.;Jeong, J.Y.;Park, S.H.;Kim, S.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.195-198
    • /
    • 2009
  • In this study, in order to get the forming limit of AHSS sheet in the negative minor strain region, the shapes of die corner and drawbead are redesigned by employing the Taguchi's design of experiment method and the FEM forming simulation. With the redesigned FLD tool, the forming limit tests of automotive multi-phase(Dual Phase and Complex Phase) steel sheets which induce the normal fractures on the blank are performed.

  • PDF

Multi-Stage Forming Analysis of a Milli-Component for Improvement of Forming Accuracy (밀리부품의 정밀도 향상을 위한 다단계 성형 및 금형 해석)

  • Yoon, J.H.;Huh, H.;Kim, S.S.;Na, G.H.;Park, H.J.;Choi, T.H.
    • Transactions of Materials Processing
    • /
    • v.13 no.5
    • /
    • pp.429-434
    • /
    • 2004
  • Manufacturing process for milli components has recently gained researcher's focus with the increasing tendency toward highly integrated and micro-scaled parts for electronic devices. The milli-components need more precise manufacturing process than the conventional manufacturing process since the parts require higher dimensional accuracy than the conventional ones. In order to enhance the forming accuracy and productivity, various forming procedures proposed and studied by many researchers. In this paper, forming analysis of milli-components has been studied with a new micro-former. In modeling of progressive dies, multi-stage forming sequence has been analyzed with finite element analysis by LS-DYNA3D. The analysis proposes the sequential die and part shapes with the corresponding punch force and dimensional accuracy. The analysis also considers the effect of elastic dies on the dimensional accuracy of the formed parts. The analysis result demonstrates that the elastic analysis in the milli-forming process is indispensable for accurate forming analysis. The analysis procedure in the paper will provide good information in design of a new micro-former and milli-component

Development of The Multi Forming Type Progressive Die for Thin Sheet Metal

  • Sim, Sung-Bo;Jang, Chan-Ho;Sung, Yul-Min
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.196-201
    • /
    • 2001
  • This study reveals the thin sheet metal process with multi-forming die that the name is progressive die, as a pilotless type, also high precision production part is made. They require analysis of many kinds of important factors, i.e. theory and practice of metal press working and its phenomena die structure, machining condition for die making, die material, heat treatment of die components, know-how and so on. In this study, we designed and constructed a multi-forming progressive die as a bending and drawing working of multi-stage and performed through the try out for thin sheet metal. Out of the characteristics of this paper that nothing might be ever seen before such as this type of research method on the all of processes of thin and high precision production part.

  • PDF

Three dimensional multi-step inverse analysis for optimum design of initial blank in sheet metal forming (박판금속성형의 초기 블랭크 최적설계를 위한 삼차원 다단계 역해석)

  • Lee, Choong-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2055-2067
    • /
    • 1997
  • Values of process parameters in sheet metal forming can be estimated by various one-step inverse methods. One-step inverse methods based on deformation theory, however, cause some amount of error. The amount of error is generally increased as the deformation path becomes more complex. As a remedy, a new three dimensional multi-step inverse method is introduced for optimum design of blank shapes and strain distributions from desired final shapes. The approach extends a one-step inverse method to a multi-step inverse method in order to reduce the amount of error. The algorithm developed is applied to square cup drawing to confirm its validity by demonstrating reasonably accurate numerical results. Rapid calculation with this algorithm enables easy determination of an initial blank of sheet metal forming.