• Title/Summary/Keyword: muddy sediment

Search Result 130, Processing Time 0.028 seconds

Density Composition and Feeding Guild of the Dominant Polychaetous Community in Shallow Muddy Bottom in Tomioka Bay, Amakusa, Japan

  • LEE Si-Wan;PAIK Eui-In
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.6
    • /
    • pp.793-804
    • /
    • 1995
  • Polychaetous community survey in Tomioka Bay was carried out 5 times seasonally from May 1991 to March 1992 by quantitative grab sampling (0.05m2) at 11 stations. Based on the granulometric composition and environmental factors, a homogeneous soft bottom was found in St.5-10. The species of the polychaete were classified into three feeding groups using the Fauchald and Jumars' feeding guild system. According to polychaetous community composition data, deposit feeders predominate in sandy silt area where the silt-clay content is $60-69.3\%.$ These deposit feeders were subdivided into surface deposit feeders and subsurface deposit feeders by their living position and mode. Also, suspension feeding group comes as the third dominant group. Seasonal changes of each feeding group were described in terms of numerical density and biomass. Feeding layer and types of dominant species (Lumbrineris longifolia: surface deposit feeder; Praxillella pacifica: subsurface deposit feeder; Chone duneri; suspension filter feeder, etc.) were examined in the intact sediment core samples. Also, longterm density change among the three dominant species during 10 years was disussed.

  • PDF

Volcaniclastic Sedimentation of the Sejong Formation (Late Paleocene-Eocene), Barton Peninsula, King George Island, Antarctica

  • Yoo, Chan-Min;Choe, Moon-Young;Jo, Hyung-Rae;Kim, Yae-Dong;Kim, Ki-Hyune
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.97-107
    • /
    • 2001
  • The Sejong Formation of Late Paleocene to Eocene is a lower volcaniclastic sequence unconformably overlain by upper volcanic sequence, and distributed along the southern and southeastern cliffs of the Barton Peninsula. The Sejong Formation is divided into five sedimentary facies; disorganized matrix-supported conglomerate (Facies A), disorganized clast-supported conglomerate (Facies B), stratified clast-supported conglomerate (Facies C), thin-bedded sandstone (Facies D), and lapilli tuff (Facies E), based on sedimentary textures, primary sedimentary structures and bed geometries. Individual sedimentary facies is characterized by distinct sedimentary process such as gravel-bearing mudflows or muddy debris flows (Facies A), cohesionless debris flows (Facies B),unconfined or poorly confined hyperconcentrated flood flows and sheet floods (Facies C), subordinate streamflows (Facies D), and pyroclastic flows (Facies E). Deposition of the Sejong Formation was closely related to volcanic activity which occurred around the sedimentary basin. Four different phases of sediment filling were identified from constituting sedimentary facies. Thick conglomerate and sandstone were deposited during inter-eruptive phases (stages 1, 3 and 4), whereas lapilli tuff was formed by pyroclastic flows during active volcanism (stage 2). These records indicate that active volcanism occurred around the Barton Peninsula during Late Paleocene to Eocene.

  • PDF

Characteristics of Particles Size and Element Distribution in the Coastal Bottom Sediments in the Vicinity of Youngkwang Nuclear Power Plant (영광 원자력발전소 주변해역 표층퇴적물의 입도와 원소분포 특성)

  • 은고요나
    • Economic and Environmental Geology
    • /
    • v.33 no.3
    • /
    • pp.195-204
    • /
    • 2000
  • order to investigate physical characteristics and element concentrations of sediments, coastal bottom sediments were collected at 20 stations in the vicinity of Youngkwang Nuclear Power Plant. After air drying of samples in the laboratory. article size distribution was examined by Master sizer (X-350F), radio-activity by HPGe ${\gamma}$-spectrphotometer, and element concentrations by ICP-AES and AAS. According to particle size analysis , sediments are mainly composed of silt fraction weith 23% of sand, 65% of silt and 12% of clay on average. Most sediments are derived from muddy environment that silt dominates with the characteristics of 5.3${\varsigma}$ mean particle size, poorly sorted, very fine skewed and lepto-kurtic. Only two sediments are well sorted with sandy silt owing to wind, winnowing action, tide and current andits complex reactions. Element concentrations in the coastal bottom sediments are relatively high at finer sediment and show significant relationship with grain size. Index of geoaccumulation by heavy metals at every sampling station is classified as practically unpolluted. The radioactivities of the sediments were measured for 15 isotope elements, and 2 elements of K-40 and Cs-137 were detected in most sediments. The K-40 is the natural nuclide and the artificial nuclide of Cs-137 was thought to be derived from the fallout of past nuclear weapon test. The results of correlation coefficient between grain size and radioactivity shows that the activity of Cs-137 significantly increases in finer grain.

  • PDF

Polycyclic Aromatic Hydrocarbons in Sediments of the Yellow Sea

  • Yang, Dong-Beom;Yu, Jun;Lee, Ki-Bok;Kim, Kyung-Tae;Chung, Chang-Soo;Hong, Gi-Hoon
    • Ocean and Polar Research
    • /
    • v.21 no.2
    • /
    • pp.149-157
    • /
    • 1999
  • Surface sediment samples collected from the eastern half of the Yellow Sea proper in 1998 were analyzed for polycyclic aromatic hydrocarbons (PAHs), ubiquitous pollutants. Total PAHs concentrations varied from 1.0 to $320.5ng\;g^{-1}$ dw. Relatively high concentrations of PAHs were found in the muddy central part of the Yellow Sea. Sedimentary total PAHs concentrations in the Yellow Sea proper were similar to those of Californian offshores and the central Mediterranean Sea, albeit an order of magnitude lower than the Yellow Sea nearshore areas. Phenanthene/Anthracene concentration ratio of PAHs in bottom sediments suggested that pyrolytic PAHs might be dominant over petrogenic ones in the eastern Yellow Sea. Downcore depth distributions of PAHs from the relatively undisturbed core samples of the central Yellow Sea showed decreasing PAHs concentrations with core depths and suggested that the Yellow Sea has been increasingly exposed to PAH for decades. Annual total PAH flux to these sediments was estimated to be $166{\mu}gm^{-2}yr^{-1}$ in the central part of the Yellow Sea for the recent decade.

  • PDF

Four unrecorded species of free-living nematodes from the sublittoral zone in the East Sea, Korea

  • Jung-Ho Hong;Kichoon Kim;Seunghan Lee;Kanghyun Lee
    • Journal of Species Research
    • /
    • v.13 no.2
    • /
    • pp.147-158
    • /
    • 2024
  • Four species of the free-living nematodes were collected from marine sediments in the sublittoral zone in the East Sea, Korea and were identified, described, and illustrated. Paranticoma tricerviseta Zhang, 2005, originally described from the Bohai Sea, China, is recorded for the first time in the East Sea, Korea; only in body length and thickness (1902-2282 ㎛ compared to 2472-3300 ㎛, 50-62 ㎛ compared to 57-82 ㎛, respectively). Specimens of Parodontophora marina Zhang, 1991, from East Sea, Korea largely agrees with the original description of Zhang (1991) of nematodes from the Bohai Sea, except for differences in body length and thickness (1190-1345 ㎛ compared to 1235-1408 ㎛, 40-44 ㎛ compared to 42-72 ㎛). Terschellingia longicaudata de Man, 1907 is reported for the first time in Korea, but was previously considered a cosmopolitan species of nematodes with a widespread distribution from the North Sea, Belgium to the Exclusive Economic Zone of New Zealand; it differs from the original description in body thickness(30-38 ㎛ vs. 40-62 ㎛). Vasostoma brevispicula Huang & Wu, 2011, originally described from the subtidal muddy sediment in the Yellow Sea, China, is newly reported in Korea; apart from a few minor morphological differences, body length and thickness (2009-2425 ㎛ vs. 2119-2906 ㎛, 41-48 ㎛ vs. 37-58 ㎛). The present study on unrecorded species improves our understanding of nematode species diversity in Korean waters.

Growth and Population Dynamics of Zostera marina Due to Changes in Sediment Composition in the Seomjin Estuary, Korea (퇴적물 성상 변화에 따른 섬진강 하구 거머리말의 생장 특성)

  • kim, Jeong Bae;Park, Jung-Im;Lee, Won-Chan;Lee, Kun-Seop
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.1
    • /
    • pp.43-52
    • /
    • 2015
  • The growth and population dynamics of eelgrass (Zostera marina) due to changes in sediment composition were examined in the lower intertidal zone of the Seomjin Estuary, Korea. We surveyed environmental factors such as water temperature, underwater irradiance, main types and organic content of sediment, tidal exposure, and nutrient concentrations in the water column and sediment pore water, in relation to the shoot density, biomass, morphological characteristics, and growth of Z. marina inhabiting lower intertidal zones. The survey was conducted monthly from May to December of 2004 and 2009. The water temperature showed obvious seasonal trends in both study years. Underwater irradiance was significantly higher in 2009 than in 2004. Tidal exposure was not significantly different between 2004 and 2009. The sediment was muddy-sand in 2004 but became sandy and with a significantly lower organic content in 2009. Water column $NH_4{^+}$ concentrations were significantly higher in 2004 than in 2009. Sediment pore water $NO_3{^-}+NO_2{^-}$ concentrations were significantly higher in 2009 than in 2004. Other nutrient concentrations did not differ significantly between 2004 and 2009. Morphological characteristics, including eelgrass length and leaf width were significantly lower in 2009 than in 2004. Eelgrass shoot height, leaf length, and sheath length showed typical seasonal patterns, increasing in early summer and decreasing in autumn, in both years. Vegetative shoot density was not significantly different between 2004 and 2009, while the biomass of individual plant parts and the total biomass were significantly lower in 2009. Eelgrass leaf productivity did not differ between years, but leaf turnover time was significantly shorter in 2009 than in 2004. Eelgrass downsizing and decreased turnover time in 2009 compared to 2004 indicate more effective adaptations to the stress of long-term changes in sediment composition. Overall, results suggest that changes in sediment composition can be a limiting factor for seagrass growth in the intertidal zone.

Analysis of Soil Erosion Reduction Ratio with Changes in Soil Reconditioning Amount for Highland Agricultural Crops (고랭지 농업의 작물별 객토량 변화에 따른 토양유실 저감 분석)

  • Heo, Sunggu;Jun, ManSig;Park, Sanghun;Kim, Ki-sung;Kang, SungKeun;Ok, YongSik;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.185-194
    • /
    • 2008
  • There is increased soil erosion potential at highland agricultural crop fields because of its topographic characteristics and site-specific agricultural management practices performed at these areas. The agricultural upland fields are usually located at the sloping areas, resulting in higher soil loss, pesticides, and nutrients in case of torrential rainfall events or typhoon, such as 2002 Rusa and 2003 MaeMi. At the highland agricultural fields, the soil reconditioning have been performed every year to decrease damage by continuous cropping and pests. Also it has been done to increase crop productivity and soil fertility. The increased amounts of soil used for soil reconditioning are increasing over the years, causing significant impacts on water quality at the receiving water bodies. In this study, the field investigation was done to check soil reconditioning status for potato, carrot, and cabbage at the Doam-dam watershed. With these data obtained from the field investigation, the Soil and Water Assesment Tool (SWAT) model was used to simulate the soil loss reduction with environment-friendly and agronomically enough soil reconditioning. The average soil reconditioning depth for potato was 34.3 cm, 48.3 cm for carrot, and 31.2 cm for cabbage at the Doam-dam watershed. These data were used for SWAT model runs. Before the SWAT simulation, the SWAT ArcView GIS Patch, developed by the Kangwon National University, was applied because of proper simulation of soil erosion and sediment yield at the sloping watershed, such as the Doam-dam watershed. With this patch applied, the Coefficient of Determination ($R^2$) value was 0.85 and the Nash-Sutcliffe Model Efficiency (EI) was 0.75 for flow calibration. The $R^2$ value was 0.87 and the EI was 0.85 for flow validation. For sediment simulation, the $R^2$ value was 0.91 and the EI was 0.70, indicating the SWAT model predicts the soil erosion processes and sediment yield at the Doam-dam watershed. With the calibrated and validated SWAT for the Doam-dam watershed, the soil erosion reduction was investigated for potato, carrot, and cabbage. For potato, around 19.3 cm of soil were over applied to the agricultural field, causing 146% of more soil erosion rate, approximately 33.3 cm, causing 146% of more soil erosion for carrot, and approximately 16.2 cm, causing 44% of more soil erosion. The results obtained in this study showed that excessive soil reconditioning are performed at the highland agricultural fields, causing severe muddy water issues and water quality degradation at the Doam-water watershed. The results can be used to develop soil reconditioning standard policy for various crops at the highland agricultural fields, without causing problems agronomically and environmentally.

Characteristics of Surficial Sediment and Benthic Environments Based on Geochemical Data in Gwangyang Bay, Korea (지화학적 자료에 근거한 광양만 표층퇴적물의 특성과 저서환경)

  • 현상민;팽우현;이태희
    • Korean Journal of Environmental Biology
    • /
    • v.22
    • /
    • pp.93-102
    • /
    • 2004
  • A total of 110 surface sediment were analyzed in order to understand the geochemical eharacteristics of the surface sediments and to evaluate the benthic environmental condition of Gwangyang Bay. The surface sedimentary distribution can be classified by five facies; mud (M), sandy mud (sM), sand (S), muddy sand (mS) and gravely sand mud ((g)sM). However, mud face is the predominant sedimentary feature of the Gwangyang Bay. The benthic environment based on total organic carbon/total nitrogen (C/N) and total organic carbon/total sulfur (C/S) ratios of organic matter showed that anoxic environment is prevailed in some parts of the study area because the C/S ratio of organic matter was higher than 2.8. The hydrogen sulfide (H$_2$S) content showed extreme variability from site to site. It varies from 307 ppm to 1 ppm (average, 92 ppm). The inter-relationship of redox-sensitive elements (Mn, V, Mo and Cr) showed a relatively strong positive relationship with high accumulation in the sediment at the inner sites of the Bay (left of Myo Island). High content of TOC and hydrogen sulfide, and a high accumulation rate of redox- sensitive element were predominant characteristics in the sediments at the inner sites of the Bay (left of Myo Island), suggesting that this area is in an oxygen deficient, and potentially polluted condition.

Biological Resources of Pen Shell, Atrina (Servatrina) pectinata japonica in the Coastal Waters of Chungchung-namdo, Korea. 1. Effects of Environmental Factors on Distribution Pattern (충남연안 키조개의 자원생물학절 연구 1. 환경특성이 분포양상에 미치는 영향)

  • 홍승현;마채우;오철웅
    • The Korean Journal of Malacology
    • /
    • v.18 no.1
    • /
    • pp.53-59
    • /
    • 2002
  • The distribution and density of the pen shell, Atrina (Servatrina) pectinata japonica, were investigated to estimate population ecological parameters and biomass. Samples were collected during cruises from April to June 1999 in the coastal waters of Chungchung-namdo, Korea. The oceanographic conditions such as depth, temperature, transparency and suspended solids were measured from sampling stations. Seawater depth ranged from 3.9 m to 75.9 m and the mean was 28.5 m (SE = 0.97). The mean density of the pen shell was higher in the depth of 18.0-30.8 m. The water temperature of the bottom ranged from 7.0-21.5$^{\circ}C$ and the mean was 14.$0^{\circ}C$. The transparency ranged from 1.2-13.5 m and the mean was 4.8 m. The suspended solids ranged from 6.0-93.5 mg/l and the mean was 48.0 mg/l. The sand proportion of the sediment was > 50%. The mean densities of the pen shell by sediment type were 7.3 individuals/40 m$^2$ (SE = 2.16) in the sand, 5.6 individuals/40 m$^2$ (SE = 1.48) in the muddy sand, 3.0 individuals/40 m$^2$(SE = 1.89) in the sandy mud, and none in the mud. The sandy bottom, accounting for 29.8% of the overall habitat area, had a maximum density of 7.3 individuals/40 m$^2$.

  • PDF

Pore Water Chemistry of Intertidal Mudflat Sediments: 1. Seasonal Variability of Nutrient Profiles (S, N, P) (조간대 퇴적물의 공극수 지구화학 : 1. 용존 영양염 (S, N, P)의 계절변화)

  • Lee, Chang-Bok;Kim, Dong-Seon
    • 한국해양학회지
    • /
    • v.25 no.1
    • /
    • pp.8-20
    • /
    • 1990
  • A series of pore water data were obtained during the different time over one year period between October 1987 and October 1988, from a site on a muddy intertidal flat, located in the Kyeong-gi Bay, west coast of Korea, The results have revealed that the tidal flat is an environment of active nutrient the subface supplied by the overlying seawater is almost completely removed from the pore water at depth of about 10 cm below the sediment surface. The nutrients such as ammonium and phosphate are produced through this process and subsequently accumulated in the pore water forming steep gradients near the sediment surface. Below the main sulfate redirection zone, a secondary peak of dissolved sulfate was often observed. Greal seasonal variation of the pore water nutrient profiles was observed, which was particularly clear in their maximum concentration as well as in their concentration gradient. The rate constants of sulfate reduction and nutrient regeneration, estimated by using a diagenetic model (Berner, 1980), differ by an order of magnitude between the summer and winter seasons. The difference in sediment temperature may account for most of the calculated variation. The C:N:P ratio, calculated from the pore water nutrient gradients also exhibits a slight seasonal difference. The organic matter being decomposed by sulfate reduction appears to be depleted in depleted in nitrogen, compared to the average marine organic matter.

  • PDF