• Title/Summary/Keyword: mucosal protein

Search Result 156, Processing Time 0.022 seconds

Effects of Nucleosides and a Nucleotide Mixture on Intenstinal Mucosal Repair in Rats (위축된 흰쥐의 소장 점막의 회복에 미치는 Nucleoside 와 Nucleotide 혼합물의 효과)

  • 이선영
    • Journal of Nutrition and Health
    • /
    • v.31 no.4
    • /
    • pp.679-686
    • /
    • 1998
  • This study was performed to determine whether the infusion of nucleosides and a nucleotide mixture directly ito intestinal lumen can induce a regenerative effect on impaired intestinal mucosa. The effects of massive small bowel resention and also total parenteral nutrition were induced by surgical creation of Thirty-Vella fistual in male Sprague-Dawley rats. The rats received saline solution (Control group) or nucleosides and a nucleotide mixture(lower concentration group(Nucl) or higher concentration group (Nuc2) every two days into the fistula. Mucosal protein, DNA , ornithine decarboxylase(ODC) activity, and morphometry were evaluated at 9 or 21 days postoperation in the fistual and also in the residual ileal segment. On the 9th day, mucosal protein, DNA content, and villous surface area in the fistula and also in the residual ileum increased in rats that received nucleosides and a nucleotide mixture of lower concentration (Nuc 1). On the 21 th day, there were no significant differences in intestinal mucosa between the control group and the lower level nucleoside nucleotide mixture-treated group. The fistula villous height of the higher nucleosides and a nucleotide mixture group was higher than in the control rats. Fistula mucosal ODC activities were not significantly different between groups although the mucosal ODC activity of the residual ileal segment was increased on the 9th day. Our data suggests that this animal model is suitable for studying the effect of dietary factors on intestinal mucosal growth and regeneration after villous stropy , differentiating direct effects of diet on the intestine from systemic effects. It is also suggested that external nucleosides and nucleotides have supportive effects on intestinal mucosal regeneration.

  • PDF

Oral Insulin-like Growth Factor-I Combined Alters Intestinal Protein Synthesis in Parenterally-fed Piglets

  • Park, Yoo-Kyoung;Sharon M. Donovan
    • Nutritional Sciences
    • /
    • v.3 no.2
    • /
    • pp.57-65
    • /
    • 2000
  • Partial enteral nutrition (PEN) supplemented with insulin-like growth factor-I (IGF-I) to neonatal piglets receiving parenteral nutrition increases lactase-phlorizin hydrolase (LPH) activity, but not LPH mRNA. The goal of the current study was to investigate the mechanism by which IGF-I up-regulates LPH activity. We hypothesized that IGF-I regulates LPH synthesis post-transcriptionally. Methods: Newborn piglets (n=15) received 100% parenteral nutrition (TPN), 80% parenteral nutrition + 20% PEN (PEN), or PEN + IGF-I (1.0mg/kg/d). On day 7, two stable isotopes of leucine, [$^2 H_3$]-leucine and [$^{13}C_1$]-L-leucine were intravenously administered to measure mucosal protein and brush LPH (BB LPH) synthesis. Results: Weight gain, nutrient intake and jejunal weight and length were similar among the treatment groups. PEN increased mucosal weight, villus width and cross-sectional area, LPH activity, mRNA expression and the abundance of proLPHh compared to 100% TPN (p<0.05). IGF-I further increased mucosal weight, LPH activity and LPH activity per unit BB LPH ~2-fold over PEN alone (p<0.05), but did not affect LPH mRNA or the abundance of proLPHh or mature LPH. Isotopic enrichment of [$^2 H_3$]-leucine and [$^{13}C_1$]-L-leucine in plasma, mucosal protein and LPH precursors, and the fractional and absolute synthesis rates of mucosal protein and LPH were similar among the treatment groups. Total mucosal protein synthesis was increased 60% (p<0.05) and LPH synthesis tended (p=0.14) to be greater in the IGF-I treated animals compared to the other two groups. Conclusions: The primary mechanism by which IGF-I up-regulates LPH may be post-translational, either via reducing LPH turnover, or by specifically altering LPH activity.

  • PDF

Identification of a Peptide Enhancing Mucosal and SystemicImmune Responses against EGFP after Oral Administration in Mice

  • Kim, Sae-Hae;Lee, Kyung-Yeol;Kim, Ju;Park, Seung-Moon;Park, Bong Kyun;Jang, Yong-Suk
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.244-250
    • /
    • 2006
  • Gangliosides are receptors for various peptides and proteins including neuropeptides, ${\beta}$-amyloid proteins, and prions. Recently, the role of gangliosides in mucosal immunization has attracted attention due to the emerging interest in oral vaccination. Ganglioside GM1 exists in abundance on the surface of the M cells of Peyer's patch, a well-known mucosal immunity induction site. In the present study we identified a peptide ligand for GM1 and tested whether it played a role in immune induction. GM1-binding peptides were selected from a phage-displayed dodecapeptide library and one peptide motif, GWKERLSSWNRF, was fused to the C-terminus of enhanced green fluorescent protein (EGFP). The fusion protein, but not EGFP fused with a control peptide, was concentrated around Peyer's patch after incubation in the lumen of the intestine ex vivo. Furthermore, oral feeding of the fusion protein but not control EGFP induced mucosal and systemic immune responses against EGFP resembling Th2-type immune responses.

Tissue Distribution of HuR Protein in Crohn's Disease and IBD Experimental Model (염증성 장질환 모델 및 크론병 환자에서의 점막상피 HuR 단백질의 변화 분석)

  • Choi, Hye Jin;Park, Jae-Hong;Park, Jiyeon;Kim, Juil;Park, Seong-Hwan;Oh, Chang Gyu;Do, Kee Hun;Song, Bo Gyoung;Lee, Seung Joon;Moon, Yuseok
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1339-1344
    • /
    • 2014
  • Inflammatory bowel disease is an immune disorder associated with chronic mucosal inflammation and severe ulceration in the gastrointestinal tract. Antibodies against proinflammatory cytokines, including TNF${\alpha}$, are currently used as promising therapeutic agents against the disease. Stabilization of the transcript is a crucial post-transcriptional process in the expression of proinflammatory cytokines. In the present study, we assessed the expression and histological distribution of the HuR protein, an important transcript stabilizer, in tissues from experimental animals and patients with Crohn's disease. The total and cytosolic levels of the HuR protein were enhanced in the intestinal epithelia from dextran sodium sulfate (DSS)-treated mice compared to those in control tissues from normal mice. Moreover, the expression of HuR was very high only in the mucosal and glandular epithelium, and the relative localization of the protein was sequestered in the lower parts of the villus during the DSS insult. The expression of HuR was significantly higher in mucosal lesions than in normal-looking areas. Consistent with the data from the animal model, the expression of HuR was confined to the mucosal and glandular epithelium. These results suggest that HuR may contribute to the post-transcriptional regulation of proinflammatory genes during early mucosal insults. More mechanistic investigations are warranted to determine the potential use of HuR as a predictive biomarker or a promising target against IBD.

Mucosal Immune Response and Adjuvant Activity of Genetically Fused Escherichia coli Heat-Labile Toxin B Subunit

  • Lee, Yung-Gi;Kang, Hyung-Sik;Lee, Cheong-Ho;Paik, Sang-Gi
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.490-497
    • /
    • 2004
  • Although the E. coli heat-labile enterotoxin B subunit (LTB) is known to be a potent mucosal adjuvant towards co-administrated unrelated antigens and immunoregulator in T-helper 1-type-mediated autoimmune diseases, a more efficient and useful LTB is still required for prospective vaccine adjuvants. To determine whether a novel chimeric LTB subunit would produce an enhanced mucosal adjuvant activity and immune response, a number of LTB subunits were genetically fused with chimeric proteins using the epitope genes of the envelope glycoprotein E2 (gp51-54) from the classical swine fever virus (CSFV). It was found that the total serum immunoglobulin (Ig) levels of BALB/c mice orally immunized with chimeric proteins containing an N-terminal linked LTB subunit (LE1, LE2, and LE3) were higher than those of mice immunized with LTB, E2 epitope, and chimeric proteins that contained a C-terminal linked LTB subunit. In particular, immunization with LE1 markedly increased both the total serum Ig and fecal IgA level compared to immunization with LTB or the E2 epitope. Accordingly, the current results demonstrated that the LTB subunit in a chimeric protein exhibited a strong mucosal adjuvant effect as a carrier molecule, while the chimeric protein containing the LTB subunit stimulated the mucosal immune system by mediating the induction of antigen-specific serum Ig and mucosal IgA. Consequently, an LE1-mediated mucosal response may contribute to the development of effective antidiarrhea vaccine adjuvants.

Immunization with a Genetically Engineered Uropathogenic Escherichia coli Adhesin-Escherichia coli Enterotoxin Subunit A2B Chimeric Protein

  • Lee, Yong-Hwa;Kim, Byung-O;Pyo, Suhk-Neung
    • Biomolecules & Therapeutics
    • /
    • v.13 no.2
    • /
    • pp.101-106
    • /
    • 2005
  • The generation of secretory IgA antibodies (Abs) for specific immune protection of mucosal surfaces depends on stimulation of the mucosal immune system, but this is not effectively achieved by parenteral or even oral administration of most soluble antigens. Thus, to produce a possible vaccine antigen against urinary tract infections, the uropathogenic E. coli (UPEC) adhesin was genetically coupled to the heat-labile Escherichia coli enterotoxin A2B (ltxa2b) gene and cloned into a pMAL-p2E expression vector. The chimeric construction of pMALfimH/ltxa2b was then transformed into E. coli K-12 TB1 and its nucleotide sequence was verified. The chimeric protein was then purified by applying the affinity chromatography. The purified chimeric protein was confirmed by SDS-PAGE and westem blotting using antibodies to the maltose binding protein (MBP) or the heat labile E. coli subunit B (LTXB), plus the N-terminal amino acid sequence was analyzedd. The orderly-assembled chimeric protein was confirmed by a modified $G_{M1}$-ganglioside ELISA using antibodies to adhesin. The results indicate that the purified chimeric protein was an Adhesin/LTXA2B protein containing UPEC adhesin and the $G_{M1}$-ganglioside binding activity of LTXB. thisstudy also demonstrate that peroral administration of this chimeric immunogen in mice elicited high level of secretory IgA (sIgA) and serum IgG Abs to the UPEC adhesin. The results suggest that the genetically linked LTXA2B acts as a useful mucosal adjuvant, and that adhesin/LTXA2A chimeric protein might be a potential antigen for oral immunization against UPEC.

Induction of a systemic IgG and secretory IgA responses in mice by peroral immunization with uropathogenic Escherichia coli adhesin protein coupled to cholera toxin A2B subunits

  • Lee, Yong-Hwa;Kim, Byung-Oh;Rhee, Dong-Kwon;Pyo, Suh-Kneung
    • Biomolecules & Therapeutics
    • /
    • v.11 no.3
    • /
    • pp.157-162
    • /
    • 2003
  • The generation of secretory IgA antibodies(Abs) for specific immune protection of mucosal surfaces depends on stimulation of the mucosal immune system, but this is not effectively achieved by parenteral or even oral administration of most soluble antigens. Thus, to produce a possible vaccine antigen against urinary tract infections, the uropathogenic E. coli (UPEC) adhesin was genetically coupled to the ctxa2b gene and cloned into a pMAL-p2E expression vector. The chimeric construction of pMALfimHIctxa2b was then transformed into E. coli K-12 TB1 and its nucleotide sequence was verified. The chimeric protein was then purified by applying the affinity chromatography. The purified chimeric protein was confirmed by SDS-PAGE and western blotting using antibodies to the maltose binding protein (MBP) or the cholera toxin subunit B (CTXB), plus the N-terminal amino acid sequence was analyzed. The orderly-assembled chimeric protein was confirmed by a modified $G_{M1}$-ganglioside ELISA using antibodies to adhesin. The results indicate that the purified chimeric protein was an Adhesin/CTXA2B protein containing UPEC adhesin and the $G_{M1}$-ganglioside binding activity of CTXB. This study also demonstrate that peroral administration of this chimeric immunogen in mice elicited high level of secretory IgA and serum IgG Abs to the UPEC adhesin. The results suggest that the genetically linked CTXA2B acts as a useful mucosal adjuvant, and that the adhesin/CTXA2B chimeric protein might be a potential antigen for oral immunization against UPEC.

Transmucosal Delivery of Luteinizing Hormone-Releasing Hormone: Effect of Medium Chain Fatty Acid Salts on Stabilization of LHRH in Mucosal Homogenates in vitro. (황체호르몬 유리호르몬의 경점막 수송: 가토 점막균질액 중에서 중쇄지방산염의 LHRH에 대한 안정화 효과)

  • Han, Kun;Park, Jeong-Sook
    • YAKHAK HOEJI
    • /
    • v.38 no.1
    • /
    • pp.67-77
    • /
    • 1994
  • In order to investigate the feasibility of transmucosal delivery of the model peptide, LHRH, metabolism of LHRH and inhibition effect of medium chain fatty acid salts were studied in rabbit mucosal homogenate. LHRH incubated in homogenates of rectal(RE), nasal(NA) and vaginal(VA) mucosa were assayed by HPLC. Five to six degradation products of LHRH were deterted and the degradation of LHRH$(500\;{\mu}g/ml)$ followed the first order kinetics. The main degradation products were found as $LHRH^{1-5}(M-I)$, $LHRH^{1-3}(M-II)$ and $LHRH^{1-6}(M-III)$ by the method of amino acid analysis. The half-lives of LHRH in the mucosal homogenates were found to be less than 20 min at protein concentration of 2.5 mg/ml with the order of VA>NA>RE mucosal homogenate. Medium chain fatty acid salts such as sodium caprylate $(C_8)$, sodium caprate $(C_{10})$ and sodium laurate $(C_{12})$ at the concentration of $0.5%{\sim}1.0%$ inhibit the proteolysis of LHRH significantly. The addition of sodium laurate(0.5%) into the NA and VA mucosal homogenates protected LHRH completely from the degradation.

  • PDF

Food protein-induced proctocolitis: Is this allergic disorder a reality or a phantom in neonates?

  • Hwang, Jin-Bok;Hong, Jeana
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.12
    • /
    • pp.514-518
    • /
    • 2013
  • The etiology of small and fresh rectal bleeding in neonates who are not sick is usually unknown; the only known cause is food protein-induced proctocolitis (FPIPC). It has been recently reported that FPIPC is a rare cause of rectal bleeding in newborns, and most cases have been proved to be due to idiopathic neonatal transient colitis. A recommended strategy for diagnosing suspected FPIPC in neonates is as follows. During the early stage, the etiology of small and fresh rectal bleeding in an otherwise healthy newborn need not be studied through extensive investigations. In patients showing continued bleeding even after 4 days, sigmoidoscopy and rectal mucosal biopsy may be performed. Even if mucosal histological findings indicate a diagnosis of FPIPC, further oral food elimination and challenge tests must be performed sequentially to confirm FPIPC. Food elimination and challenge tests should be included in the diagnostic criteria of FPIPC.

Targeted Delivery of VP1 Antigen of Foot-and-mouth Disease Virus to M Cells Enhances the Antigen-specific Systemic and Mucosal Immune Response

  • Kim, Sae-Hae;Lee, Ha-Yan;Jang, Yong-Suk
    • IMMUNE NETWORK
    • /
    • v.13 no.4
    • /
    • pp.157-162
    • /
    • 2013
  • Application of vaccine materials through oral mucosal route confers great economical advantage in animal farming industry due to much less vaccination cost compared with that of injection-based vaccination. In particular, oral administration of recombinant protein antigen against foot-and- mouth disease virus (FMDV) is an ideal strategy because it is safe from FMDV transmission during vaccine production and can induce antigen-specific immune response in mucosal compartments, where FMDV infection has been initiated, which is hardly achievable through parenteral immunization. Given that effective delivery of vaccine materials into immune inductive sites is prerequisite for effective oral mucosal vaccination, M cell-targeting strategy is crucial in successful vaccination since M cells are main gateway for luminal antigen influx into mucosal lymphoid tissue. Here, we applied previously identified M cell-targeting ligand Co1 to VP1 of FMDV in order to test the possible oral mucosal vaccination against FMDV infection. M cell-targeting ligand Co1-conjugated VP1 interacted efficiently with M cells of Peyer's patch. In addition, oral administration of ligand-conjugated VP1 enhanced the induction of VP1-specific IgG and IgA responses in systemic and mucosal compartments, respectively, in comparison with those from oral administration of VP1 alone. In addition, the enhanced VP1-specific immune response was found to be due to antigen-specific Th2-type cytokine production. Collectively, it is suggested that the M cell-targeting strategy could be applied to develop efficient oral mucosal vaccine against FMDV infection.