• Title/Summary/Keyword: mu kimchi

Search Result 148, Processing Time 0.028 seconds

Quality Characteristics of Winter Chinese Cabbage and Changes of Quality During the Kimchi Fermentation (월동배추의 품질 특성 및 김치 발효 중 이화학적 변화)

  • 정석태;김지강;강은주
    • Food Science and Preservation
    • /
    • v.6 no.2
    • /
    • pp.179-183
    • /
    • 1999
  • This study were comparison the quality characteristics of winter Chinese cabbage and investigation the physicochemical properties during Kimchi fermentation. External characteristics of three cultivars winter Chinese cabbage were compared, total weight of "Manpung" cultivar showed the heaviest in Chinese cabbages, but edible portion weight of "Seolwang" cultivar showed the heaviest in Chinese cabbages. Kimchi made of winter Chinese cabbage were fermented at 5$^{\circ}C$ for 40 days, of which pH, acidity, free sugar and organic acid were measured. The hardness of "Manpung" cultivar continued highly during the Kimchi fermentation at 5$^{\circ}C$. The pH and total acid in Kimchi fermentation, of the "Manpung" cultivar changed more than those of others. At the initial stage of Kimchi fermentation the major organic acid was citric acid, but lactic acid and acetic acid were increased rapidly during fermentation of Kimchi. The major organic acid of Kimchi fermented for 30 days was lactic acid, and the lactic acid contents of Kimchi prepared with "Manpung" cultivar was 6,796.6$\mu\textrm{g}$/g account for 69.6% of total organic acid.

  • PDF

The Effects of Solvent Fractions of Kimchi on Plasma Lipid Concentration of Rabbit Fed High Cholesterol Diet (김치의 용매획분이 고콜레스테롤 식이를 섭취한 토끼의 혈중지질 농도 변화에 미치는 영향)

  • 송영옥;황지원
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.2
    • /
    • pp.204-210
    • /
    • 2000
  • The antioxidative effects of solvent fractions of kimchi on LDL oxidatiojn in vitro as well as hypolipidemic effects of these fractions in rabbit fed atherogenic diet were studied. Methanol extract of deffated kimchi was fractionated sequentially with dichloromethane, ethylacetate, butanol and water. All solvent fractions of kimchi inhibited Cu2+-induced LDL oxidation. Among these fractions, the dicholoromethane fraction at the concentration of 25$\mu\textrm{g}$/mL showed the highest antioxidant effects against LDL oxidation in the aspect of inhibiting TBARS production by 28.03% or prolonged lag phase duration 2-fold compared to those of control. Based on the results from in vitro study, New Zealand White Rabbits grouped six each were fed for 8 weeks either basal diet containing 1% cholesterol or experimental diet containing dichloromethane, ethylacetate or water fraciton added to the basal diet. The amount of solvent fraction of kimchi added to the experimental diet was equivalent to 5% of freeze-dried kimchi. The hypolipidemic effects was observed from all experimental gropus, especially from dichloromethane fraction added group. The plasma and LDL cholesterol levels of this group were decreased by 49% and 47%, respectively while that of HDL increased by 91% compared to those of control. The calculated atherogenic index for the dichloromethane group was the lowest among groups. However, TG lowering effect of experimental group was not observed since solbent fraction of kimchi was used instead of freeze-dried kimchi. The TBARS concentration of LDL isolated from rabbit fed dichloromethane fraction was decreased 21% than that of control. These results indicate that active principles responsible for inhibiting LDL oxidation and lowering plasma cholesterol may present abundantly in dichloromethane fraction of kimchi.

  • PDF

Antioxidant activities of brown teff hydrolysates produced by protease treatment

  • Yun, Ye-Rang;Park, Sung-Hee
    • Journal of Nutrition and Health
    • /
    • v.51 no.6
    • /
    • pp.599-606
    • /
    • 2018
  • Purpose: Various plants, herbal medicines, and marine foodstuffs have been used in kimchi preparation to improve its overall quality. Teff, which is rich in minerals and starches, facilitates stable blood glucose levels and is well-suited for use in gluten-free products; hence, it can be used to reinforce the mineral composition of kimchi. In this study, we probed the antioxidant activities of hydrolysates prepared by treatment of brown teff with three proteases under different conditions. Methods: The mineral composition of brown teff was determined by inductively coupled plasma spectrophotometry-mass spectrometry, and we established optimal hydrolysis conditions by determining the total phenol and flavonoid contents of teff hydrolysates obtained using three different proteases (protamax, flavourzyme, and alcalase), two different protease concentrations (1 and 3 wt%), and three different incubation times (1, 2, and 4 h). The antioxidant activity of the hydrolysates was further investigated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, total antioxidant capacity (TAC), and ferrous reducing antioxidant power (FRAP) assays. Results: Brown teff was rich in I, K, Mg, and Ca, and the highest total phenol content ($24.16{\mu}g/mL$), total flavonoid content ($69.08{\mu}g/mL$), and TAC were obtained for 1 wt% protamax treatment. However, the highest DPPH scavenging activity and FRAP values were observed for hydrolysates produced by alcalase and flavourzyme treatments, respectively. Conclusion: Treatment of brown teff with proteases affords hydrolysates with significantly increased antioxidant activities and high total phenol and flavonoid contents, and these antioxidant activities of teff hydrolysates have the potential to enhance the quality and functionality of kimchi in future applications.

Fermentative Properties and Immunomodulating Activity of Low-sodium Kimchi Supplemented with Acanthopanax senticosus and Glycyrrhizae uralensis Extracts (가시오가피와 감초 추출물을 첨가한 저 나트륨 김치의 발효특성과 면역 활성능)

  • Yu, Kwang-Won;Suh, Hyung-Joo;Hwang, Jong-Hyun
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.4
    • /
    • pp.878-887
    • /
    • 2012
  • This study investigated the fermentative characteristics and immunomodulating activity in Kimchi added with various salts (salt replacement and herb-salt with Acanthopanax senticosus and Glycyrrhizae uralensis) for the reduction of Na concentration in Kimchi. Kimchi using a salt replacement and herb-salt showed a higher level of acidity (0.8~0.84%) than that of the control (0.7%) at 7-day fermentation. Kimchi using a salt replacement and herb-salt showed a lower level of salinity (1.72~1.98%) than that of control (2.3~2.57%) during fermentation. The growth of Lactobacillus spp. and Leuconostoc spp. recorded the highest level ($2.3{\times}10^8$ and $2.8{\times}10^6cfu/g$, respectively) in control at 6 day-fermentation. However, those levels in Kimchi prepared with salt replacement and herb-salt were $3.5{\sim}5.4{\times}10^8$ and $6.1{\times}10^6cfu/g$, respectively. It is assumed that the high level of acidity of Kimchi prepared with salt replacement and herb-salt was caused by the increase in the growth of Lactobacillus spp. and Leuconostoc spp.. When the macrophage stimulating activity of salt replacement kimchi (Salt-R kimchi) supplemented with hot-water extract from Acanthopanax sentisus (AS) or Glycyrrhiza uralensis (GU) was investigated on aging period, Salt-RA kimchi with AS 5% at 6 days (2.78-fold of saline control at $100{\mu}g/m{\ell}$) and Salt-RG kimchi with GU 5% at 9 days (2.02-fold) significantly increased compared to the Salt-RA kimchi without AS or GU. In addition, Salt-RAG kimchi with AS 3% and GU 3% improved the bitter taste of Salt-RA and potently stimulated the macrophage at 6 days (1.28-fold of Salt-R kimchi) even though its activity was lower than Salt-RA (5%, 1.39-fold).

Effects of Kimchi Extracts on Interleukin-2 Production and Natural Killer Cell Activity in Mice

  • Kim, Kwang-Hyuk;Kim, So-Hee;Rhee, Sook-Hee;Park, Kun-Young
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.3
    • /
    • pp.282-286
    • /
    • 1998
  • To determine the immune effect of kimchi extracts in mice, 0.5mg/day of the extracts from kimchis, which were prepared with conventionally (general kimchi)and organically(organic kimchi) cultivated ingredients, were treated orally to male BALB/c mice. Following 1, 3 and 5 weeks of treatment , the Interleukin-2(IL-2) production in the presence (con-A-stimulated )or the absence(spontaneous)of con A 95 $\mu\textrm{g}$/ml) and the natural killer cell (NK) activity of the splenocytes were measured. The IL-2 production in most of treatments with methanol extract from general kimchi were significantly higher than those of control(p<0.05).And at the 3 weeks of treatment, the spontaneous or con A-stimulated IL-2 productions from splenocytes of mice treated with it increased more than those of control group, by 2.8 and 2.2 times, respectively. However, the longer the treatment with methanol extracts from organic kimchi showed the higher the enhancing effect on the IL-2 production. The spontaneous or con A-stimulatdIL-2 productions form splenocytes of mice treated with dicholoromethyane fraction from general kimchi also increased at 5 weeks of treatment compared to those of control group, by 2.7 and 2.5 times, respectively. The natural killer cell activity of splenocytes from mice treated with methano lextracts from general kimchi for 1 ~5 weeks significantly higher than that of control goup (p<0.01). The effect of methano extracts from general kimchi was the highest at 3 weeks of treatment, as same as in the IL-2 production. The enhancing effect of methano extracts from organic kimchi on the NK cell activity was the highest at 5 weeks of treatment . The NK cell activity of splenocytes from mice treated with dichloromethane fraction from general kimchi for 5 weeks was significantly higher than those in control and 3 weeks of treatment. These results showed that the effects of kimchi extracts on the IL-2 production and the NK cell activity in mice were profound in long term of treatment (3 and 5 weeks than 1 week) . We suggest that kimchi extracts might have an immune effect in part due to its enhancing action on the IL-2 production and the NK cell activity.

  • PDF

Effects of Main Raw Material and Jeot-Kal (Fermented Fish Sauce) on Formation of N-nitrosamines During Kimchi Fermentation (김치 숙성중 니트로스아민의 생성에 대한 주원료 및 젓갈의 영향)

  • 신효선;김준환
    • Journal of Food Hygiene and Safety
    • /
    • v.12 no.4
    • /
    • pp.333-339
    • /
    • 1997
  • The effects of kind of vegetables and of the kind and amounts of fermented fish sauce on the formation of nitrosamine (NA) during kimchi fermentation were investigated. Kimchies made of Chinese cabbage, cucumber, and radish with fermented shrimp, anchovy and liquid sauces were fermented at 4$^{\circ}C$ for 6 weeks and the changes in the content of nitrate, nitrite, trimethylamine (TMA), dimethylamine (DMA) and NA were studied. Nitrate content in kimchies made of Chinese cabbage, cucumber, and radish increased at the initial period of fermentation, but it decreased at the later period. Nitrite was not detected at the later period of kimchi fermentation. Overall, there have not been great changes in the contents of nitrite and nitrate. However, there have been considrable changes in the contents of TMA and DMA as fermentation progressed. Only nitrosodimethylamine (NDMA) at the level of 0.5~10.3 $\mu\textrm{g}$/kg was formed in three kinds of kimchies. More NDMA was formed in radish and cucumber kimchies than in Chinese cabbage kimchi. The pH was lowered faster in radish and cucumber kimchies than in Chinese cabbage kimchi. More NDMA was formed in Chinese cabbage kimchi made with fermented shrimp sauce than those with anchovy or liquid sauces. Shrimp sauce contained higher amount of DAM than anchovy and liquid sauces. The contents of NDMA tended to increase as the amount of shrimp sauce increased. The kind and amount of fermented fish sauce used for kimchi preparation may be an important factor affecting the formation of NDMA.

  • PDF

Changes in the Levels of γ-Aminobutyric Acid and Free Amino Acids during Kimchi Fermentation (김치 발효 숙성 중의 γ-aminobutyric acid (GABA) 및 아미노산 함량의 변화)

  • Lee, Hye-Hyun;Kim, Gun-Hee
    • Korean journal of food and cookery science
    • /
    • v.29 no.6
    • /
    • pp.671-677
    • /
    • 2013
  • The objective of this study was to examine the levels of free amino acids and identify the correlation between ${\gamma}$-aminobutyric acid (GABA)and L-glutamic acid contents in Kimchi during fermentation. During 2 weeks of fermentation, the acidity of Kinchi increased, i.e., the pH level decreased from 5.24 to 4.40. The content of amino acids determined using HPLC differed significantly (p < 0.05) during 7 weeks of fermentation. Over the 7 weeks of fermentation, the content of most free amino acids increased in the order L-valine > L-glutamic acid > L-glycine, except L-methionine decreased. Initially, the GABA content was found to be $72.43{\mu}M/100g$ fresh weight (fw), and it increased to $229.06{\mu}M/100g$ fw after 7 weeks. This rapid increase in the GABA content in the initial stage is considered to be due to L-glutamic acid. However, during the period of 0~7 weeks, no correlations were found between the L-glutamic acid and GABA contents.

Evaluation of pH-sensitive Eudragit E100 Microcapsules Containing Nisin for Controlling the Ripening of Kimchi

  • Ko, Sung-Ho;Kim, Han-Soo;Jo, Seong-Chun;Cho, Sung-Hwan;Park, Wan-Soo;Lee, Seung-Cheol
    • Food Science and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.358-362
    • /
    • 2005
  • Eudragit E100 microcapsules containing nisin were prepared and employed to control the ripening of kimchi. The recovery yields of microcapsules without/with nisin ranged from 93.53 to 94.61 % and 92.85 to 94.09 %, respectively. The particle size of microcapsules decreased (>200 to $100\;{\mu}m$) as the amount of aluminium tristearate increased from 6.0 to 15 %. The microcapsules were morphologically spherical and possessed rough surface. Nisin was completely released from the microcapsules within a day at pH 3.0 and within two days at pH 4.0, 5.0, and 6.0, respectively, whereas half the amount of nisin was released at pH 7.0 within two days. During fermentation of kimchi with microcapsules containing nisin, the pH decrease was retarded which resulted in a constant pH of approximately 4.2. The pH of 4.2 was optimal for ripening of kimchi for a longer period of time when compared with samples without nisin.

Fermentation Properties of Young Radish Kimchi Prepared Using Young Radish Cultivated in the Soil Containing Sulfur and It's Inhibitory Effect on the Growth of AGS Human Gastric Adenocarcinoma Cells (유황처리 열무로 제조한 열무김치의 특성과 인체 위암세포의 성장억제효과)

  • Kong, Chang-Suk;Bak, Soon-Sun;Rhee, Sook-Hee;Rho, Chi-Woong;Kim, Nak-Ku;Choi, Keyng-Lag;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.2
    • /
    • pp.158-163
    • /
    • 2006
  • Young radishes (YR, yeolmu in Korean) were cultivated in the soil with and without sulfur. YR-Control (without sulfur) was grown in the normal soil. YR were grown in the soil with $1,818\;g/m^3$ sulfur (YR-A) and $1,818\;g/m^3$ sulfur added lime mortar (YR-B) on it, respectively. Also, we prepared YR kimchis using YR-Control, YR-A and YR-B. The kimchis were fermented at $5^{\circ}C$ for 8 weeks. The growth inhibitory effects of AGS human gastric adenocarcinoma cells of the YR samples and kimchis were investigated. YR kimchis after $4\~5$ weeks at $5^{\circ}C$ showed higher acidity of $0.88\~1.20\%$ with pH $4.3\~4.5$ and the YR kimchis kept approximately pH 4.0 until 8 weeks. The kimchi A and B using YR-A and YR-B showed faster fermentation time, higher level of Leuconostoc sp. and lower level of Lactobacillus sp. during the fermentation, comparing to the control kimchi using YR-Control. Juices from YR-A and YR-B showed higher growth inhibitory effects of AGS human gastric adenocarcinoma cells than the juice from YR-Control at the same concentration. The growth inhibitory effect of YR-A was similar to that of the YR-B. The kimchi A and B juices also exhibited higher inhibitory effects $(74\%)$ on the growth of AGS human gastric adenocarcinoma cells than that of the control kimchi $(57\%)$ at the higher concentration of $20{\mu}L/assay$. Methanol extracts from the YR-kimchis also led to the similar results to the results of the juices. These results suggested that preparing of kimchi using differently cultivated YR especially in the soil with sulfur, which can help to synthesize sulfur-containing compounds, could increase the growth inhibitory effects of AGS human gastric adenocarcinoma cells.

Analysis and Risk Assessment of N-Nitrosodimethylamine and Its Precursor Concentrations in Korean Commercial Kimchi (국내 유통 김치 중 N-Nitrosodimethylamine과 그 전구물질의 함량 분석 및 안전성 평가)

  • Kang, Kyung Hun;Kim, Sung Hyun;Kim, Sang-Hyun;Kim, Jeong Gyun;Sung, Nak-Ju;Lim, Heekyung;Chung, Mi Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.2
    • /
    • pp.244-250
    • /
    • 2017
  • Dimethylamine (DMA), nitrate, nitrite, and biogenic amines (BA) are precursors of carcinogenic N-nitrosamines. This study investigated contamination levels of DMA, nitrate, nitrite, and BA in various types of Korean commercial kimchi such as Baechu kimchi, Kkakduki, Chonggak kimchi, Matkimchi, ripened Baechu kimchi, and Baek kimchi. The average DMA, nitrate, and nitrite levels in Baechu kimchi were 29.7, 2,178.8, and 3.0 mg/kg, respectively. Low levels of DMA and nitrate were detected in Kkakduki. Tryptamine, putrescine, cadaverine, tyramine, and spermidine were detected in kimchi with exclusion of Baek kimchi and Chonggak kimchi. Tryptamine in Baek kimchi was only present in trace amount, and spermidine was not detected in Chonggak kimchi. The average tryptamine, putrescine, cadaverine, tyramine, and spermidine levels in Baechu kimchi were 15.0, 64.6, 18.0, 44.0, and 7.8 mg/kg, respectively. A low level of tyramine was detected in Kkakduki. In addition, contamination of N-nitrosodimethylamine (NDMA) was detected in Kkakduki at a level of $1.38{\mu}g/kg$. Daily exposure to NDMA in the consumer only group was estimated using average daily Kkakduki consumption and average body weight of the total population. The estimated daily intake of NDMA by Kkakduki was $2.31{\times}10^{-7}mg/kg\;b.w./d.$ The margin of exposure to NDMA for the general population was 259,924. Accordingly, the health risk from NDMA caused by intake of Kkakduki was considered to be very low.