• Title/Summary/Keyword: moving elements

Search Result 348, Processing Time 0.025 seconds

Design of Interplanetary Orbit by Lambert Solution (람베르트 해를 이용한 행성 간 궤도 설계)

  • Kim, Dong-Sun
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.72-78
    • /
    • 2024
  • It is essential to coincide with moving target planet at future arrival changing point during space flight time in an interplanetary orbit design. Transition orbit elements can be obtained from traditional Lambert solutions by adjusting initial and final positions include flight time. Two-point boundary values of orbits can be selected in the design process. From this point of view, interplanetary orbits are infinite if they can be acquired from departure velocity without limit. However, appropriate and optimized procedures are needed to obtain an optimum interplanetary orbit to meet given conditions. The departure velocity is highly dependent on space launch vehicle's ability up to now. In this paper, algorithms of professor Howard Curtis at Embry-Riddle Aeronautical University were applied to obtain Lambert solution and orbit elements.

A Case Study on Impact Factor of Bridge in Tunnels Subjected to Moving Vehicle Load (터널내 교량의 이동차량하중 작용시 충격계수에 대한 사례연구)

  • 김재민;이중건;이익효;이두화
    • Tunnel and Underground Space
    • /
    • v.9 no.3
    • /
    • pp.185-193
    • /
    • 1999
  • This paper presents results of dynamic analysis for a bridge in intersection part of two tunnels subjected to moving vehicle load. Since such a bridge system is very unusual due to the fact that it is located in tunnel, the dynamic characteristics of the structure can not be assumed as conventional one. The structure investigated in this study it a reinforced concrete bridge in the intersection part of Namsan Tunnel-1 and Tunnel-2 in Seoul. It is supported by temporary steel structure which shall be constructed during the period of replacing lining in Tunnel-2. Dynamic analysis was carried out for the system using a finite element model constructed by general purpose FE program SAP2000. For this purpose, the structure, lining of tunnels, and surrounding rock were represented by finite elements, while the rock region it truncated and on its outer boundary viscous dampers were placed to simulate radiation of elastic waves generated tunnels. Several types of vehicle with various driving velocities were considered in this analysis. The FE model including vehicle loadings was verified by comparing calculated peak particle velocity with the measured one. From the analysis, the impart factor for the bridge was estimated as 0.21, which indicates that the use of upper bound for the impact factor in design code is reasonable for this kind of bridge system.

  • PDF

Heuristic Algorithms for Capacitated Collection Network Design in Reverse Logistics

  • Kim, Ji-Su;Lee, Dong-Ho
    • Management Science and Financial Engineering
    • /
    • v.14 no.2
    • /
    • pp.45-66
    • /
    • 2008
  • Refuse collection, one of important elements in reverse logistics, is an activity rendering recyclables or wastes and moving them to some points where further treatment is required. Among various decisions in the collection activity, we focus on network design, which is the problem of locating collection points as well as allocating refuses at demand points to collection points while satisfying the capacity restriction at each collection point. Here, the collection point is the place where recyclables or wastes near the point are gathered, and locating the collection points is done by selecting them from a given set of potential sites. The objective is to minimize the sum of fixed costs to open collection points and transportation costs to move refuses from demand points to collection points. An integer programming model is developed to represent the problem mathematically and due to the complexity of the problem, two types of heuristics, one with simultaneous and the others with separate location and allocation, are suggested. Computational experiments were done on test problems up to 500 potential sites, and the results are reported. In particular, some heuristics gave near optimal solutions for small-size test problems, i.e., 2% gaps in average from the optimal solution values.

Meshless formulation for shear-locking free bending elements

  • Kanok-Nukulchai, W.;Barry, W.J.;Saran-Yasoontorn, K.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.2
    • /
    • pp.123-132
    • /
    • 2001
  • An improved version of the Element-free Galerkin method (EFGM) is presented here for addressing the problem of transverse shear locking in shear-deformable beams with a high length over thickness ratio. Based upon Timoshenko's theory of thick beams, it has been recognized that shear locking will be completely eliminated if the rotation field is constructed to match the field of slope, given by the first derivative of displacement. This criterion is applied directly to the most commonly implemented version of EFGM. However in the numerical process to integrate strain energy, the second derivative of the standard Moving Least Square (MLS) shape functions must be evaluated, thus requiring at least a $C^1$ continuity of MLS shape functions instead of $C^0$ continuity in the conventional EFGM. Yet this hindrance is overcome effortlessly by only using at least a $C^1$ weight function. One-dimensional quartic spline weight function with $C^2$ continuity is therefore adopted for this purpose. Various numerical results in this work indicate that the modified version of the EFGM does not exhibit transverse shear locking, reduces stress oscillations, produces fast convergence, and provides a surprisingly high degree of accuracy even with coarse domain discretizations.

Analysis of quasi-brittle materials using two-dimensional polygon particle assemblies

  • Lee, Jong Seok;Rhie, Yoon Bock;Kim, Ick Hyun
    • Structural Engineering and Mechanics
    • /
    • v.16 no.6
    • /
    • pp.713-730
    • /
    • 2003
  • This paper contains the results of the study on the development of fracture and crack propagation in quasi-brittle materials, such as concrete or rocks, using the Discrete Element Method (DEM). A new discrete element numerical model is proposed as the basis for analyzing the inelastic evolution and growth of cracks up to the point of gross material failure. The model is expected to predict the fracture behavior for the quasi-brittle material structure using the elementary aggregate level, the interaction between aggregate materials, and bond cementation. The algorithms generate normal and shear forces between two interfacing blocks and contains two kinds of contact logic, one for connected blocks and the other one for blocks that are not directly connected. The Mohr-Coulomb theory has been used for the fracture limit. In this algorithm the particles are moving based on the connected block logic until the forces increase up to the fracture limit. After passing the limit, the particles are governed by the discrete block logic. In setting up a discrete polygon element model, two dimensional polygons are used to investigate the response of an assembly of different shapes, sizes, and orientations with blocks subjected to simple applied loads. Several examples involving assemblies of particles are presented to show the behavior of the fracture and the failure process.

Analysis of Electric Power Effect of Piezoelectric Element on Steel-concrete Composite Bridge (강합성 교량에 설치된 압전소자의 전력발생효과 분석)

  • Kim, Sang-Hyo;Jung, Chi-Young;Chung, Ha-Min;Ahn, Jin-Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.411-420
    • /
    • 2010
  • In general, moving vehicles generate continuous and repetitive strain of energy on bridges. The strain energy can convert to electric energy due to its piezoelectric element. However, some factors should be considered in order to reasonably assess the feasibility such as load distribution applied on bridges and the relationship of strains generated according to loads. This study was carried out to estimate the generated voltage when piezoelectric elements were installed to a bridge. A steel-concrete composite specimen was fabricated and loads were applied, considering vehicle load-effects. As a result, the voltage generated in the element was evaluated and compared with the analysis equation of the piezoelectric effect.

A Study on the Digital Space Color by Application Color System in New Media Environment (뉴미디어 환경의 색채시스템을 적용한 디지털 공간색채 연구)

  • Kim, Sun-Young
    • Korean Institute of Interior Design Journal
    • /
    • v.20 no.6
    • /
    • pp.236-243
    • /
    • 2011
  • The digital space color of new media environment denied not only the deterministic relationship of designed color and circumjacent color but also the deduced an special elements of digital space color. Such phenomena historical perspective of Gernot Wersig, new media principle of Lev Manovich and remediation of Bolter, J.K & Grusin, R. are expressed in various new media environment across. In particular, development of digital technology is moving away from its previous space color based on scientific, statistical and quantitative perspective by using diverse variables. The following research focuses on the fundamental concept of space color by type, composition of digital space color. The paper reflects on the meaning and concept of contemporary which enables the application of digital space color system on space through advanced technology. The principle of digital space color such as multidimensional malerisch, discontinuous video, vague original and copy, irregular repetitiveness of 'copy of copy', selective color of observer, experiential color of observer, and etc. makes it possible to extract the expressed element and method of digital space color. Meanwhile, the features of digital space color such as divided field of form, non-systematized of process and collage of communication can be inferred from case analysis.

Assessment of effect of material properties on seismic response of a cantilever wall

  • Cakir, Tufan
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.601-619
    • /
    • 2017
  • Cantilever retaining wall movements generally depend on the intensity and duration of ground motion, the response of the soil underlying the wall, the response of the backfill, the structural rigidity, and soil-structure interaction (SSI). This paper investigates the effect of material properties on seismic response of backfill-cantilever retaining wall-soil/foundation interaction system considering SSI. The material properties varied include the modulus of elasticity, Poisson's ratio, and mass density of the wall material. A series of nonlinear time history analyses with variation of material properties of the cantilever retaining wall are carried out by using the suggested finite element model (FEM). The backfill and foundation soil are modelled as an elastoplastic medium obeying the Drucker-Prager yield criterion, and the backfill-wall interface behavior is taken into consideration by using interface elements between the wall and soil to allow for de-bonding. The viscous boundary model is used in three dimensions to consider radiational effect of the seismic waves through the soil medium. In the seismic analyses, North-South component of the ground motion recorded during August 17, 1999 Kocaeli Earthquake in Yarimca station is used. Dynamic equations of motions are solved by using Newmark's direct step-by-step integration method. The response quantities incorporate the lateral displacements of the wall relative to the moving base and the stresses in the wall in all directions. The results show that while the modulus of elasticity has a considerable effect on seismic behavior of cantilever retaining wall, the Poisson's ratio and mass density of the wall material have negligible effects on seismic response.

Kinematic properties of the Ursa Major Cluster

  • Kim, YoungKwang;Lee, Young Sun;Beers, Timothy C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.30.3-31
    • /
    • 2015
  • We present a kinematic analysis of 172 likely member galaxies of the Ursa Major Cluster. In order to understand the dynamical state of the cluster, we investigate the correlation of the cluster morphology with rotation, the velocity dispersion profile, and the rotation amplitude parallel to the global rotation direction. Both the minor axis and the rotation are very well-aligned with the global rotation axis in the outer region at half radius (> 0.5 $R_{max}$), but not in the inner region. The cluster exhibits low velocity dispersion and rotation amplitude profiles in the inner region, but higher in the outer. Both profiles exhibit outwardly increasing trends, suggesting an inside-out transfer of angular momentum of dark matter via violent relaxation, as revealed by a recent off-axis major-merging simulation. From Dressler-Schectman plots in the plane of galactic positions, and velocity versus position angle of galaxy, we are able to divide the Ursa Major Cluster into two substructures: Ursa Major South (UMS) and Ursa Major North (UMN). We derive a mass of $3.2{\times}10^{14}M_{\odot}$ for the cluster through the two-body analysis by the timing argument with the distance information (37 for UMN and 36 for UMS) and the spin parameter of ${\lambda}=0.049$. The two substructures appear to have passed each other 4.4 Gyr ago and are moving away to the maximum separation.

  • PDF

Cam Profile Design of a Fuel Pump Using Dynamic Analysis (동해석을 이용한 연료펌프의 캠 형상 설계)

  • Kim Bong-Ho;Lee Boo-Youn;Kim Won-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.58-64
    • /
    • 2006
  • This work focuses on reducing the noise and vibration levels of an LPi fuel pump, which are generated from the dynamic motions of pump elements and non-uniform flow of fuel. The noise and vibration levels increase as the revolution speed of the cam goes up. The fuel pump consists of five cavity cells, plungers and diaphragms, which are driven by the cam. The optimal design of the cam profile is performed to decrease the accelerations of moving Parts and to obtain a smooth hydraulic force through a dynamic analysis of a cam-plunger mechanism. The cam-Plunger with a cavity is modeled as a 2 degrees of freedom system having non-linear contacts, the cam profile being represented in terms of Fourier series in order to determine the optimal shape of the cam. From the optimized cam Profile, the acceleration of the diaphragm is reduced in $78\%$, the hydraulic force becoming smoother in case that the hydraulic force is rapidly dropped.