• Title/Summary/Keyword: moving baseline RTK

Search Result 3, Processing Time 0.018 seconds

Evaluation of RTK Methods for Moving Vehicles and Practical Recommendations

  • Kim, Sae-Kyeol;Kim, Euiho
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.253-262
    • /
    • 2021
  • Global Navigation Satellite Systems (GNSS) based precise positioning using Real Time Kinematic (RTK) technique has been proposed as an enabler of the formation operation of moving vehicles. In RTK methods, the integer ambiguity of GNSS carrier phase measurements must be resolved. Although there have been many proposed algorithms for the integer ambiguity resolution, the widelane combination of carrier phase measurements and LAMBDA methods have gained the most popularity in literatures when dual frequency GNSS measurements were used. In this paper, we evaluated five alternative methods to determine relative positions of moving base and rover receivers; the round-off scheme of widelane carrier phase, instant least-squares and Kalman filter-based LAMBDA with widelane carrier phase, instant least-squares and Kalman filter-based LAMBDA with dual frequency measurements. The paper presented the performance of each method using flight test data, which showed their strength and weakness in the aspects of time-to-first-fix, ambiguity resolution success ratio, and relative position errors. Based on that, we provided practical recommendations of RTK operations for moving vehicles.

Evaluation of N-RTK Positioning Accuracy for Moving Platform (기선 거리에 따른 이동체의 N-RTK 위치정확도 평가)

  • Kim, Min-Seo;Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.259-267
    • /
    • 2020
  • For real-time precise positioning, N-RTK (Network Real-Time Kinematic) technology is widely used these days. However, the currently operating N-RTK system has a limitation in terms of the number of users. Therefore, if reference points generate correction messages with no limit on the number of users are developed later, it is determined that an appropriate reference point installation interval is required, so that the accuracy of the N-RTK system according to the baseline distance was analyzed. This experiment utilized receivers with varying performance that estimated the rover position, and RTKLIB, an open-source software, is used for processing data. As a result, the rover position was estimated accurately with a high rate of fixed ambiguity for all the receivers. When the reference station with a baseline length of 40 km was used, the vertical RMSE (Root Mean Squared Error) was quite similar to the short baseline case, but only half of the ambiguity fixing rate was achieved. The outlier in the estimated rover position was not observed for the longer baselines in the case of a high-end receiver. It is necessary to analyze the ambiguity fixing and the accuracy of the kinematic positioning with scientific GNSS processing software.

Analysis of Coast Topography by RTK GPS and Echo Sounder

  • Lee, Jea-One;Kim, Jin-Soo
    • Korean Journal of Geomatics
    • /
    • v.2 no.1
    • /
    • pp.57-64
    • /
    • 2002
  • Measuring the depth of water is very important in ensuring the protection and safety of seaside. There are many difficulties in making the contour bathymetric map, and contour line due to the limitation of continuous measurement of water depth and collimation with the conventional measuring and positioning methods. But the real-time kinematic GPS (RTK GPS) positioning using a carrier phase enables us to decide a precise position without breaking a signal even under the condition of a moving environment. It is also possible to obtain an accurate depth of water in real time with a fathometer through the measuring of time delay between sending and receiving epochs. This research aims at investigation of accuracy potential of RTK GPS in combination with Echo Sounder(E/S) for the coastal mapping. Apart from this purpose, the accuracy of ambiguity resolution with the OTF(On the Fly) method was tested with respect to the initialization time. The result shows that the accuracy is better than 1cm with 5-minute initialization in the distance of 10km baseline. The seaside topography was measured by the RTK GPS only, on the other hand the seafloor topography was surveyed in combination of RTK GPS and E/S. Comparing to the volume of seaside measured by RTK GPS and digital topographical map, the difference of only 2 % was achieved. This indicates that the coastal mapping with RTK GPS is successfully conducted. In addition it is also demonstrated that the 3-dimensional perspective model resulted from the undersea topography measured by RTK GPS and E/S is very close to that from the digital map. Through this study, it was verified that RTK GPS is to be very useful method in the analysis of coastal morphology owing to its capability of getting the precise DTM for the using of harbor reclamation, dredging, and the estimation of soil movement in a river.

  • PDF