• 제목/요약/키워드: mouse sperm

Search Result 135, Processing Time 0.026 seconds

Studies of the Radiation Effects on Mouse Germ Cell (방사선(放射線)이 생쥐생식세포(生殖細胞)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Chung, Kyu-Hoi;Chun, Ki-Jung;Chung, Hai-Won;Yoo, Byung-Sun;Lee, Jeong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.10 no.1
    • /
    • pp.29-40
    • /
    • 1985
  • The objectives of present study is to investigate genetic damage of radiation in mammalian male germ cell and. to establish available screening method for determining genetic hazard by radiation. Several methods were employed to measure the genetic damage of radiation as follows: Sperm head counts, frequency occurrence of sperm with abnormal head shape, fertility, activity of LDH-X, and the induction of unscheduled DNA synthesis (U.D.S.) in male mouse were performed with the passing of time after irradiation by making use of the sequence of event that occurs during spermatogenesis. Sperm head counts and activity of LDH-X in testes were gradually reduced by increased radiation dose and with the passing of the time after irradiation. Frequency occurrence of sperm with abnormal head shape, sterile period, and the induction of unscheduled DNA synthesis were increased by increased radiation dose. It is suggested that since germ cell is a direct reflection of genetic complement, the use of male germ cell is rapid and convenient method for measuring genetic damage by radiation.

  • PDF

Effects of Nitric Oxide Modulating Drugs on Acrosome Reaction in Mouse Spermatozoa

  • Gye, Myung Chan
    • Animal cells and systems
    • /
    • v.4 no.2
    • /
    • pp.151-155
    • /
    • 2000
  • Nitric oxide (NO) is a reactive free radical which plays important roles in animal physiology. To investigate involvement of NO in acrosome reaction (AR), effects of drugs which modulate the intracellular NO level were examined in mouse spermatozoa. N (G)-nitro-L-arginine (L-NA), a potent inhibitor of NO synthesis, decreased AR in a reversible manner, On the other hand, sodium nitroprusside (SNP), an NO generating agent, increased spontaneous AR. Preincubation of sperm in the presence of L-NA potentiated AR after sperm transfer into plain- or SNP-media. Methylene blue, a NO scavenging agent, decreased spontaneous AR. Taken together, it is concluded that NO positively controls AR.

  • PDF

The effect of lipopolysaccharide from uropathogenic Escherichia coli on the immune system, testis tissue, and spermatozoa of BALB/c mice

  • Khanmohammad, Khadije Rezai;Khalili, Mohammad Bagher;Sadeh, Maryam;Talebi, Ali Reza;Astani, Akram;Shams, Ali;Zare, Fateme
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.2
    • /
    • pp.105-110
    • /
    • 2021
  • Objective: Uropathogenic Escherichia coli is known to cause urinary tract infections, and the endotoxin (lipopolysaccharide [LPS]) of this bacterium may cause deficiencies of sperm quality and morphology. In the present study, the effects of LPS on mouse sperm were studied, and the levels of interleukin (IL)-17A and possible changes in testis tissue were evaluated. Methods: LPS of uropathogenic E. coli was extracted using the methanol-chloroform method, followed confirmation using sodium dodecyl sulfate-polyacrylamide electrophoresis. Purified LPS (100 ㎍/kg) or phosphate-buffered saline was injected intraperitoneally into BALB/c mice for 7 days consecutively in the test and control groups, mice were sacrificed on days 3, 7, and 42 after the first injection. Blood was tested for levels of IL-17A using the enzyme-linked immunosorbent assay method. Testis tissue and sperm were collected from each mouse and were studied according to standard protocols. Results: The mean sperm count and motility significantly decreased (p=0.03) at 3, 7, and 42 days after the injections. The level of IL-17A in the test groups increased, but not significantly (p=0.8, p=0.11, and p=0.15, respectively). Microscopic studies showed no obvious changes in the morphology of the testis tissue; however, significant changes were observed in the cellular parenchyma on day 42. Conclusion: LPS can stimulate the immune system to produce proinflammatory cytokines, resulting in an immune response in the testis and ultimately leading to deficiency in sperm parameters and testis tissue damage. In addition, the presence of LPS could significantly impair sperm parameters, as shown by the finding of decreased motility.

Testicular fat deposition attenuates reproductive performance via decreased follicle-stimulating hormone level and sperm meiosis and testosterone synthesis in mouse

  • Miao Du;Shikun Chen;Yang Chen;Xinxu Yuan;Huansheng Dong
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.50-60
    • /
    • 2024
  • Objective: Testicular fat deposition has been reported to affect animal reproduction. However, the underlying mechanism remains poorly understood. The present study explored whether sperm meiosis and testosterone synthesis contribute to mouse testicular fat deposition-induced reproductive performance. Methods: High fat diet (HFD)-induced obesity CD1 mice (DIO) were used as a testicular fat deposition model. The serum hormone test was performed by agent kit. The quality of sperm was assessed using a Sperm Class Analyzer. Testicular tissue morphology was analyzed by histochemical methods. The expression of spermatocyte marker molecules was monitored by an immuno-fluorescence microscope during meiosis. Analysis of the synthesis of testosterone was performed by real-time polymerase chain reaction and reagent kit. Results: It was found that there was a significant increase in body weight among DIO mice, however, the food intake showed no difference compared to control mice fed a normal diet (CTR). The number of offspring in DIO mice decreased, but there was no significant difference from the CTR group. The levels of follicle-stimulating hormone were lower in DIO mice and their luteinizing hormone levels were similar. The results showed a remarkable decrease in sperm density and motility among DIO mice. We also found that fat accumulation affected the meiosis process, mainly reflected in the cross-exchange of homologous chromosomes. In addition, overweight increased fat deposition in the testis and reduced the expression of testosterone synthesis-related enzymes, thereby affecting the synthesis and secretion of testosterone by testicular Leydig cells. Conclusion: Fat accumulation in the testes causes testicular cell dysfunction, which affects testosterone hormone synthesis and ultimately affects sperm formation.

Molecular cloning and characterization of Izumo1 gene from bovine testis

  • Kim, Ekyune
    • Journal of Animal Science and Technology
    • /
    • v.57 no.4
    • /
    • pp.16.1-16.7
    • /
    • 2015
  • A well-characterized sperm specific protein of the Member of immunoglobulin superfamily, IZUMO1, has crucial role in fertilization by mediating sperm binding to the egg plasma membrane in the mouse. However little is known about IZUMO1 in bovine. Here, we describe the molecular cloning and expression analysis of bovine IZUMO1 (bIZUMO1). RT-PCR and Western blot analysis of the bovine tissues indicated that bIZUMO1 was specifically expressed in the testis and sperm, Furthermore, the result of our biotinylation assay from ejaculated bovine sperm strongly suggest the assumption that bIZUMO1 is localized on the cell surface. These data imply the potential role of bovine IZUMO1 in mammalian fertilization.

Characterization of Mouse Interferon-Induced Transmembrane Protein-1 Expression in Mouse Testis

  • Lee, Ran;Park, Hyun Jung;Lee, Won Young;Kim, Ji Hyuk;Kim, In Chul;Kim, Dong Woon;Lee, Sung Dae;Jung, Hyun Jung;Kim, Jong Moon;Yoon, Hyung Moon;Kwon, Hyuk Jung;Song, Hyuk
    • Reproductive and Developmental Biology
    • /
    • v.36 no.3
    • /
    • pp.225-230
    • /
    • 2012
  • Interferon induced transmembrane protein-1 (Ifitm-1) has been reported to have an important role in primordial germ cell formation, and it has expressed in female reproductive organ. In the present study, Ifitm-1 gene expression was identified in testes and all part of epididymis using western immunoblot and immunohistochemistry. Interestingly, Ifitm-1 expression was observed on the head of spermatozoa. To investigate the role of Ifitm-1 gene expression in behavior of spermatozoa after acrosome reaction, fresh sperm was incubated with calcium ionophore to induce acrosome reaction, whereas the expression of Ifitm-1 was not altered after the acrosome reaction. Then to identify the effect of Ifitm-1 in sperm motility and other seminal parameters, different concentration of Ifitm-1 antibody was incubated with spermatozoa, and seminal parameters were assessed using computer-assisted semen analysis (CASA). Interestingly, motility, progressive, and VAP were increased in the sperm with Ifitm-1 antibody treated compared to rabbit serum, however other parameters such as straightness were not changed. In order to identify the functional significance of Ifitm-1 in fertilization, capacitated spermatozoa were pre-incubated with anti-Ifitm-1 antibody and subsequently examined the ability to adhere to mouse oocytes. However, any defection or alteration in sperm-egg fusion was not found, Ifitm-1 antibody treated or non-treated spermatozoa showed a normal penetration. Although the precise role of Ifitm-1 in sperm motility and following fertilization need to be elucidated, this study suggests that the activation of Ifitm-1 on the sperm may enhance the motility of spermatozoa in mice.

A Study About Microbiochip for Separation of Motile Sperm by Using Chemotaxis (주화성에 의한 활동성 정자 분리용 마이크로 바이오칩에 관한 연구)

  • Ko, Yong-Jun;Maeng, Joon-Ho;Ahn, Yoo-Min;Hwang, Seung-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1115-1122
    • /
    • 2008
  • This paper presents a new microchip which can separate motile sperm by chemotaxis. The microchip was developed to create longitudinal concentration gradient in the microchannel due to diffusion. Linearly good concentration gradient of chemoattractant was generated without any fluid control devices. In sperm separation experiment with the developed microchip, mouse sperm was used as sample and acetylcholine was selected as chemoattractant. Human tubal fluid (HTF), buffer solution, was introduced into the microchannel of the microchip and attractants diluted in ratio of 1, 1/2, 1/4, 1/8, 1/16, 1/32 and 1/64 including control (DI water) were dropped in each outlet by $2\;{\mu}l$ volume with micropippet. After 5min, $1\;{\mu}l$ sperm solution was dropped into inlet of the chip. After 10 min, when sperms reached to the outlet by chemotaxis, we counted sperms in each outlet by using microscopy. Consequently, we could separate progressive motile sperm with the new microchip. In the experiment, the most sperms were isolated at the outlet dropped with 1/16 diluted solution. The optimal concentration gradient to induce chemotaxis was about 0.625 mg/ml/mm.

A Study on the Decondensation and Pronucleus Formation of Sperm Nucleus in the Mouse Oocyte

  • Kang, Hee-Gyoo;Kim, Tai-Jeon;Bae, Hyung-Joon;Moon, Hi-Joo;Lee, Ho-Joon;Yang, Hye-Young;Kim, Moon-Kyoo
    • Biomedical Science Letters
    • /
    • v.7 no.4
    • /
    • pp.173-179
    • /
    • 2001
  • To investigate the ability to decondense sperm head penetrated into cytoplasm of the oocytes and the relationship between this ability and the level of glutatione (GSH) in mouse oocyte at various maturing stages. The fertilizability of oocytes at various stages of maturation the decondensation of sperm nucleus and the formation of male pronucleus, were observed and the levels of GSH were measured in oocyte at same stages. Besides, the relation between fertilizability and level of GSH in oocyte cytoplasm treated with L-buthionine-S, R-sulfoxmine (L-BSO), the inbitor of biosynthesis of GSH, was determined. The decondensation of sperm head was not found in GV stage and L-BSO treated oocytes. In maturing oocytes (GVBD, MI), the decondensation was found, but the formation of male pronucleus was not. The levels of GSH in oocyte cytoplasm were measured; 2.2 pmol per oocyte in the ovulated and the matured in vitro each, 1.0 pmol in GV intact oocyte, 1.3 pmol in GVBD, and 1.5 pmol in MI phase oocyte. In L-BSO treated oocytes the levels of CSH were measured 0.08~o.09 pmol per oocyte, slightly lower than GV stage oocyte. In conclusion, GSH in oocyte is supposed to be synthesized and storaged in cytoplasm during maturation. The failure of decondensation in the cytoplasm of GV stage and L-BSO treated is suggested that GSH is an essential factor in decondensing the sperm head and that the a certain level of GSH, more than in GV oocyte cytoplasm, is required in decondensation.

  • PDF