• Title/Summary/Keyword: mountain wave

Search Result 59, Processing Time 0.02 seconds

Airflow modelling studies over the Isle of Arran, Scotland

  • Thielen, J.;Gadian, A.;Vosper, S.;Mobbs, S.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.115-126
    • /
    • 2002
  • A mesoscale meteorological model is applied to simulate turbulent airflow and eddy shedding over the Isle of Arran, SW Scotland, UK. Under conditions of NW flow, the mountain ridge of Kintyre, located upwind of Arran, induces gravity waves that also affect the airflow over the island. The possibility to nest domains allows description of the airflow over Arran with a very high resolution grid, while also including the effects of the surrounding mainland of Scotland, in particular of the mountain ridge of Kintyre. Initialised with a stably stratified NW flow, the mesoscale model simulates quasi-stationary gravity waves over the island induced by Kintyre. Embedded in the larger scale wave trains there is continuous development of small-scale transient eddies, created at the Arran hill tops, that move downstream through the stationary wave field. Although the transient eddies are more frequently simulated on the northern island where the terrain is more pronounced, they are also produced over Tighvein, a hill of 458 m on the southern island where measurements of surface pressure and 2 m meteorological variables have been recorded at intermittent intervals between 1996 and 2000. Comparison between early observations and simulations so far show qualitatively good agreement. Overall the computations demonstrate that turbulent flow can be modelled with a horizontal resolution of 70 m, and describe turbulent eddy structure on wavelength of only a few hundred metres.

Study on Mechanisms and Orographic Effect for the Springtime Downslope Windstorm over the Yeongdong Region (봄철 영동 지역 국지 하강풍 메커니즘과 지형 효과에 대한 연구)

  • Kim, Jung-Hoon;Chung, Il-Ung
    • Atmosphere
    • /
    • v.16 no.2
    • /
    • pp.67-83
    • /
    • 2006
  • The statistical analysis for the springtime windstorm in Korea shows that Yeongdong region has the highest occurrence frequency during recent 10 years. The objective of this study is to find possible mechanisms for the downslope windstorm formation in the Yeongdong region by using a mesoscale numerical model, WRF. Dynamical process, wave breaking (hereafter WB), is qualitatively investigated as the candidate mechanism for a windstorm event occurred in 5 April, 2005. WB is developed in upper troposphere downstream, since stable air is lifted by the Taebaek mountain. This process can cause and maintain the severe downslope windstorm by drawing the upper flow down to the surface. And the intensified downslope wind leads the hydraulic jump (hereafter HJ) in downstream region. Froude numbers at Chuncheon (upslope side), Seorak Mountain (crest), Yangyang (lee side), and the East Sea (distant downstream position) are estimated by about 0.4, 1.0, 1.6, and 0.6, respectively. This result implies that the accelerated and supercritical (Fr>1) flow adjusts to the ambient subcritical (Fr<1) conditions in the turbulent HJ. In addition, we find the formation of upstream inversion near top level of the mountain cause the intensification of HJ. Experiments to examine the orographic effect on the mechanisms suggest that the magnitudes of WB and HJ are larger in the experiment of higher topography, but there is no significant difference of windstorm magnitude among the experiments. Another important result from these sensitivity experiments is that the intensity of downslope windstorm strongly depends on the magnitude of upper (2~4 km) wind in upstream side.

Error Analysis for Electromagnetic Surface Velocity and Discharge Measurement in Rapid Mountain Stream Flow (산지하천의 전자파 표면유속 측정에 기반한 유량 및 유속 관측 오차 분석)

  • Kim, Dong-Su;Yang, Sung-Kee;Jung, Woo-Yul
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.543-552
    • /
    • 2014
  • Fixed Electromagnetic Wave Surface Velocimetry (Fixed EWSV) has been started to be used to measure flood discharge in the mountain stream, since it has various advantages such that it works well to continuously measure stream discharge even in the night time as well as very strong weather. On the contrary, the Fixed EWSV only measures single point surface velocity, thus it does not consider varying feature of the transverse velocity profile in the given stream cross-section. In addition, a conventional value of 0.85 was generally used as the ratio for converting the measured surface velocity into the depth-averaged velocity. These aspects could bring in error for accurately measuring the stream discharge. The capacity of the EWSV for capturing rapid flow velocity was also not properly validated. This study aims at conducting error analysis of using the EWSV by: 1) measuring transverse velocity at multiple points along the cross-section to assess an error driven by the single point measurement; 2) figuring out ratio between surface velocity and the depth-averaged velocity based on the concurrent ADCP measurements; 3) validating the capacity of the EWSV for capturing rapid flow velocity. As results, the velocity measured near the center by the fixed EWSV overestimated about 15% of the cross-sectional mean velocity. The converting ratio from the surface velocity to the depth-averaged velocity was 0.8 rather than 0.85 of a conventional ratio. Finally, the EWSV revealed unstable velocity output when the flow velocity was higher than 2 m/s.

Analysis of Spatial Variability of Surface Wind during the Gangwon Yeongdong Wind Experiments (G-WEX) in 2020 (2020 강원영동 강풍 관측에서 지상 바람의 공간 변동성 분석)

  • Kim, Yu-Jeong;Kwon, Tae-Yong
    • Atmosphere
    • /
    • v.31 no.4
    • /
    • pp.377-394
    • /
    • 2021
  • The recent largest forest fire in the Yeongdong region, Goseung/Okgae fires of 2019 occurred during YangGang wind event. The wind can be locally gusty and extremely dry, particularly in the complex terrain of Yeongdong. These winds can cause and/or rapidly spread wildfires, the threat of which is serious during the dry spring season. This study examines the spatial variability of the surface wind and its coupling with the upper atmospheric wind using the data during the IOP of the Gangwon Yeongdong Wind Experiments (G-WEX) conducted in 2020 and the data during YangGang wind event on 4~5 April 2019. In the case of IOPs, strong wind at the surface with a constant wind direction appears in the mountain area, and weak wind with large variability in wind direction appears from foothill to the coast in the vicinity of Gangneung region. However, in the 2019 event, strong wind at the surface with a constant wind direction appears in the entire region from the mountain to the coast, even with the stronger wind in the coast than in some part of the mountain area. The characteristics of the upper atmospheric wind related with the spatial distribution of surface wind show that during IOPs of G-WEX, a strong downdraft exists near the mountaintop in the level of about 1 to 4 km. However, in the 2019 event a strong downdraft is reinforced, when its location moves toward the coast and descends close to the ground. These downdrafts are generated by the breaking of mountain waves.

Optimal Disposition of Direction Finder using EM Wave Propagation Analysis (전파환경분석을 통한 방향탐지기 최적배치에 관한 연구)

  • Yang, Jong-Won;Choi, Jun-Ho;Kwon, Do-Baeg;Kang, Hee-Seog;Park, Cheol-Sun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.170-179
    • /
    • 2007
  • This paper introduces the optimal disposition of direction finder using EM(Electro-magnetic) wave propagation analysis which is based on LR(Longley-Rice) propagation model and the characteristics of direction finder, emitter and terrain. Initial model is simulated and modified to minimize propagation error as a result of the field trials. Proposed analysis used line-of-sight analysis and mountain-top extraction algorithm to optimize the disposition in the assigned area and the result can be displayed in the 3D map in order of the percentage coverage for direction finding possibility area.

A Numerical Study on Clear-Air Turbulence Events Occurred over South Korea (한국에서 발생한 청천난류 사례들에 대한 수치연구)

  • Min, Jae-Sik;Kim, Jung-Hoon;Chun, Hye-Yeong
    • Atmosphere
    • /
    • v.22 no.3
    • /
    • pp.321-330
    • /
    • 2012
  • Generation mechanisms of the three moderate-or-greater (MOG)-level clear-air turbulence (CAT) encounters over South Korea are investigated using the Weather Research and Forecasting (WRF) model. The cases are selected among the MOG-level CAT events occurred in Korea during 2002-2008 that are categorized into three different generation mechanisms (upper-level front and jet stream, anticyclonic flow, and mountain waves) in the previous study by Min et al. For the case at 0127 UTC 18 Jun 2003, strong vertical wind shear (0.025 $s^{-1}$) generates shearing instabilities below the enhanced upper-level jet core of the maximum wind speed exceeding 50 m $s^{-1}$, and it induces turbulence near the observed CAT event over mid Korea. For the case at 2330 UTC 22 Nov 2006, areas of the inertia instability represented by the negative absolute vorticity are formed in the anticyclonically sheared side of the jet stream, and turbulence is activated near the observed CAT event over southwest of Korea. For the case at 0450 UTC 16 Feb 2003, vertically propagating mountain waves locally trigger shearing instability (Ri < 0.25) near the area where the background Richardson number is sufficiently small (0.25 < Ri < 1), and it induces turbulence near the observed CAT over the Eastern mountainous region of South Korea.

The Trouble Analysis of Electric wave Antenna Using GIS (GIS를 이용한 전파안테나 장애분석)

  • Kang, Joon-Mook;Kang, Young-Mi;Choi, Joon-Seuk;Lee, Ju-Dae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.2 s.29
    • /
    • pp.3-9
    • /
    • 2004
  • The Broadcasting system is very important part of human lift that preceding to people news, nation plan, sport, drama, leisure and politics. The product of maded by brocasting system conveyed the whole country by radio signal. A brocasting station operate the brocast product radio trial network in the mountain. Recently a height of new building, concrete structure is very large and higher then old one. Since one does or says, noise occur to radio and TV signal whole nation. In this study, Taejun Sikjang mountain and Cheunan-Heuksung mountain where occurred radio noise chosen as a sample, and analysis 3D simulation and plane check. Accordingly come to conclusion condition of noise occurred radio antenna.

  • PDF

An Investigation of Synoptic Condition for Clear-Air Turbulence (CAT) Events Occurred over South Korea (한국에서 발생한 청천난류 사례에서 나타나는 종관규모 대기상태에 대한 연구)

  • Min, Jae-Sik;Chun, Hye-Yeong;Kim, Jung-Hoon
    • Atmosphere
    • /
    • v.21 no.1
    • /
    • pp.69-83
    • /
    • 2011
  • The synoptic condition of clear-air turbulence (CAT) events occurred over South Korea is investigated, using the Regional Data Assimilation and Prediction System (RDAPS) data obtained from the Korea Meteorological Agency (KMA) and pilot reports (PIREPs) collected by Korea Aviation Meteorological Agency (KAMA) from 1 Dec. 2003 to 30 Nov. 2008. Throughout the years, strong subtropical jet stream exists over the South Korea, and the CAT events frequently occur in the upper-level frontal zone and subtropical jet stream regions where strong vertical wind shears locate. The probability of the moderate or greater (MOG)-level turbulence occurrence is higher in wintertime than in summertime, and high probability region is shifted northward across the jet stream in wintertime. We categorize the CAT events into three types according to their generation mechanisms: i) upper-level front and jet stream, ii) anticyclonically sheared and curved flows, and iii) breaking of mountain waves. Among 240 MOG-level CAT events reported during 2003-2008, 103 cases are related to jet stream while 73 cases and 25 cases are related to the anticyclonic shear flow and breaking of mountain wave, respectively.

A Study of Chinese Consumer's Attitude towards Korean Wave and Wearing Condition for Outdoor Clothing Development into the China Market - Focused on Chinese Tourist - (중국 수출용 아웃도어 웨어 개발을 위한 중국 소비자의 한류에 대한 태도 및 착용실태 조사 - 중국인 관광객을 대상으로 -)

  • Kim, Ji Eun;Min, Son Jae;Kim, Mi Ra;Choi, Hei Sun
    • Fashion & Textile Research Journal
    • /
    • v.16 no.4
    • /
    • pp.614-624
    • /
    • 2014
  • This study is intended to offer basic data for developing outdoor clothing exported to China by identifying how Chinese consumers use outdoor clothing. To accomplish the objective, a survey was conducted on 300 male and female Chinese tourists in their 10s to 40s who have purchased outdoor clothing before. As more than twice as many respondents said they wear sweatsuit or everyday clothes for mountain-climbing instead of outdoor clothing, the necessity of outdoor clothing is obviously perceived at a low level. Among them, 57.4% wear outdoor clothing as townwear in everyday lives, and other respondents are dissatisfied with the design. Thus, it is necessary to develop townwear-style design. When buying outdoor clothing, wearability was the biggest consideration. Also, the first criteria for evaluating outdoor clothing was practicality for mountain-climbing activities. The functionality of outdoor clothing they needed the most was air permeability. As for outdoor clothing top, the main inconvenience was tightness around the neck. As for bottoms, it was tightness of pants when bending knees. In terms of areas to be improved, the No. 1 was unformed design. Thus, it is imperative to develop design of diverse styles. As the Chinese outdoor clothing market has grown significantly in recent years, the following should be executed by domestic companies before advancing to the market. First, they should form Korean brand image and boost the brand awareness with various activities, amid Korean Wave. Second, they should develop preferred designs among Chinese consumers and strengthen functionality of products, based on consumer survey.

Wave propagation in a concrete filled steel tubular column due to transient impact load

  • Ding, Xuanming;Fan, Yuming;Kong, Gangqiang;Zheng, Changjie
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.891-906
    • /
    • 2014
  • This study aims to present a three dimensional finite element model to investigate the wave propagation in a concrete filled steel tubular column (CFSC) due to transient impact load. Both the concrete and steel are regarded as linear elastic material. The impact load is simulated by a semi sinusoidal impulse. Besides the CFSC models, a concrete column (CC) model is established for comparing under the same loading condition. The propagation characteristics of the transient waves in CFSC are analyzed in detail. The results show that at the intial stage of the wave propagation, the velocity waves in CFSC are almost the same as those in CC before they arrive at the steel tube. When the waves reach the column side, the velocity responses of CFSC are different from those of CC and the difference is more and more obvious as the waves travel down along the column shaft. The travel distance of the wave front in CFSC is farther than that in CC at the same time. For different wave speeds in steel and concrete material, the wave front in CFSC presents an arch shape, the apex of which locates at the center of the column. Differently, the wave front in CC presents a plane surface. Three dimensional effects on top of CFSC are obvious, therefore, the peak value and arrival time of incident wave crests have great difference at different locations in the radial direction. High-frequency waves on the waveforms are observed. The time difference between incident and reflected wave peaks decreases significantly with r/R when r/R < 0.6, however, it almost keeps constant when $r/R{\geq}0.6$. The time duration between incident and reflected waves calculated by 3D FEM is approximately equal to that calculated by 1D wave theory when r/R is about 2/3.