• 제목/요약/키워드: mountain soils

검색결과 84건 처리시간 0.024초

산악지 쌍글 수로터널 해석에 대한 고찰 (A STUDY ON THE ANALYSIS ZONE OF MOUNTAIN TWIN WATER TUNNELS)

  • 백영식;김홍택;임수빈
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1993년도 봄 학술회 논문집
    • /
    • pp.21-26
    • /
    • 1993
  • Using the well-known FLAC program an analylical parametric study was made to investigate the horizontal and vartical solution zone applied to the mountain water tunnel analysis. In the analyses two different heights(30m, 130m) of overburden soils measured from the center of a tunnel and three different coafflclants of lateral earth pressures(0.25, 0.75, 0.5) were adopted. Also the effected of plliar width between twin tunnels, having two different heighte of overburdon soils as well as different soil conditions, were analyzed.

  • PDF

Mechanical properties and failure mechanism of gravelly soils in large scale direct shear test using DEM

  • Tu, Yiliang;Wang, Xingchi;Lan, Yuzhou;Wang, Junbao;Liao, Qian
    • Geomechanics and Engineering
    • /
    • 제30권1호
    • /
    • pp.27-44
    • /
    • 2022
  • Gravelly soil is a kind of special geotechnical material, which is widely used in the subgrade engineering of railway, highway and airport. Its mechanical properties are very complex, and will greatly influence the stability of subgrade engineering. To investigate the mechanical properties and failure mechanism of gravelly soils, this paper introduced and verified a new discrete element method (DEM) of gravelly soils in large scale direct shear test, which considers the actual shape and broken characteristics of gravels. Then, the stress and strain characteristics, particle interaction, particle contact force, crack development and energy conversion in gravelly soils during the shear process were analyzed using this method. Moreover, the effects of gravel content (GC) on the mechanical properties and failure characteristics were discussed. The results reveal that as GC increases, the shear stress becomes more fluctuating, the peak shear stress increases, the volumetric strain tends to dilate, the average particle contact force increases, the cumulative number of cracks increases, and the shear failure plane becomes coarser. Higher GC will change the friction angle with a trend of "stability", "increase", and "stability". Differently, it affects the cohesion with a law of "increase", "stability" and "increase".

제주도(濟州道) 토양(土壤)의 화학적(化學的) 특성(特性) 조사연구(調査硏究) I. 지대별(地帶別) 화학적(化學的) 특성(特性) 변화(變化) (Chemical Characteristics of Soils in Cheju Island I. Variations in Chemical Characteristics with Altitude)

  • 유순호;송관철
    • 한국토양비료학회지
    • /
    • 제17권1호
    • /
    • pp.1-6
    • /
    • 1984
  • 화산회토(火山灰土)인 제주도(濟州道) 토양(土壤)에 있어서 지대별(地帶別) 토지이용(土地利用)에 화학적(化學的) 특성변화(特性變化)를 고찰(考察)하였다. 1960년대(年代) 초(初)부터 농경지(農耕地)가 중산간지방(中山間地方)으로 급격(急激)하게 증대(增大)되어 가고 있으나 대부분은 농경지(農耕地)가 해안지방(海岸地方)에 분포(分布)되어 있기 때문에 경작지(耕作地)가 오래된 해안지방(海岸地方) 토양(土壤)일수록 pH, 염기포화도유효인산(有效燐酸), 치환성(置換性) Ca, Mg 및 K함량(含量)이 높으며, 유기물함량(有機物含量) 및 양(陽)이온치환용량(置換容量)은 낮아지는 경향(傾向)이었다. 전국평균(全國平均) 비교(比較)하여 유기물함량(有機物含量) 및 양(陽)이온치환용량(置換容量)이 매우 높으며 치환량(置換量) Ca, Mg, K 등(等)도 높은데 반(反)하여 유효인산(有效燐酸) 염기포화도는 극(極)히 낮았다. 총염기중 1가(價) 양(陽)이온이 차지하는 비율(比率)이 비교적(比較的) 높은데, 이는 해안지방(海岸地方)에서 산간지방(山間地方)으로 올라갈수록 높아지는 경향(傾向)이었다. 따라서 해안지방(海岸地方)의 토양(土壤) pH가 높은 것은 해풍(海風)의 영향에 의(依)한 것이라 보다, 오랜 경작(耕作)과 더불어 석회시용(石灰施用)이나 용성인시(熔成燐施)와 같은 염기성시료의 다량(多量) 시용(施用)에 의(依)한 것임을 알 수 있다.

  • PDF

Stability analysis of an unsaturated expansive soil slope subjected to rainfall infiltration

  • Qi, Shunchao;Vanapalli, Sai K.;Yang, Xing-guo;Zhou, Jia-wen;Lu, Gong-da
    • Geomechanics and Engineering
    • /
    • 제19권1호
    • /
    • pp.1-9
    • /
    • 2019
  • Shallow failures occur frequently in both engineered and natural slopes in expansive soils. Rainfall infiltration is the most predominant triggering factor that contributes to slope failures in both expansive soils and clayey soils. However, slope failures in expansive soils have some distinct characteristics in comparison to slopes in conventional clayey soils. They typically undergo shallow failures with gentle sliding retrogression characteristics. The shallow sliding mass near the slope surface is typically in a state of unsaturated condition and will exhibit significant volume changes with increasing water content during rainfall periods. Many other properties or characteristics change such as the shear strength, matric suction including stress distribution change with respect to depth and time. All these parameters have a significant contribution to the expansive soil slopes instability and are difficult to take into consideration in slope stability analysis using traditional slope stability analysis methods based on principles of saturated soil mechanics. In this paper, commercial software VADOSE/W that can account for climatic factors is used to predict variation of matric suction with respect to time for an expansive soil cut slope in China, which is reported in the literature. The variation of factor of safety with respect to time for this slope is computed using SLOPE/W by taking account of shear strength reduction associated with loss of matric suction extending state-of-the art understanding of the mechanics of unsaturated soils.

토양깊이 및 토지이용에 따른 다핵방향족탄화수소 (PAHs)의 토양 중 분포 (Polycyclic Aromatic Hydrocarbons (PAHs) in Korean Soil: Distribution by Depth and Land Use)

  • 남재작;홍석영;이종식;소규호;이상학
    • Environmental Analysis Health and Toxicology
    • /
    • 제22권2호통권57호
    • /
    • pp.129-135
    • /
    • 2007
  • Polycyclic aromatic hydrocarbons(PAHs) have been analyzed to assess vertical distribution of them with different land uses. The soils were collected from three layers; surface $(0{\sim}5cm)$, intermediate $(6{\sim}10cm)$, and deep $(11{\sim}15cm)$ layer, respectively considering land use; paddy, upland, and mountain in each site. Total 89 samples of soil from 10 sites were analyzed. Overall mean of ${\sum}PAHs$ were 137 (range $8.87{\sim}625{\mu}g\;kg^{-1}$), 203 (range $16.5{\sim}645{\mu}g\;kg^{-1}$), and $83.4{\mu}g\;kg^{-1}$ (range $6.65{\sim}667{\mu}g\;kg^{-1}$) for paddy, upland, and mountain soil, respectively. The dominant PAHs were fluoroanthene/benzo(b)fluoroanthene>pyrene>indeno(1, 2, 3-cd) pyrene in paddy, fluoroanthene/pyrene>benzo(b)fluoroanthene>chrysene in upland, and benzo(b)fluoroanthene>pyrene>chrysene in mountain soil, whereas the profile was quite similar for each other except that indeno(1, 2, 3-cd)pyrene and benzo(ghi)perylene are relatively higher in the paddy soils. Although the concentration gradient by depth was not observed in the paddy and upland soils because perturbation of soil layer by tillage, significant decrease was in the deep layer relative to the surface and intermediate layer. However, the concentration gradient of PAHs by soil depth was clearly shown in mountain soil without experiencing disturbance of tillage.

Soil properties of cultivation sites for mountain-cultivated ginseng at local level

  • Kim, Choonsig;Choo, Gap Chul;Cho, Hyun Seo;Lim, Jong Teak
    • Journal of Ginseng Research
    • /
    • 제39권1호
    • /
    • pp.76-80
    • /
    • 2015
  • Background: Identifying suitable site for growing mountain-cultivated ginseng is a concern for ginseng producers. This study was conducted to evaluate the soil properties of cultivation sites for mountain-cultivated ginseng in Hamyang-gun, which is one of the most well-known areas for mountain-cultivated ginseng in Korea. Methods: The sampling plots from 30 sites were randomly selected on or near the center of the ginseng growing sites in July and August 2009. Soil samples for the soil properties analysis were collected from the top 20 cm at five randomly selected points. Results: Mountain-cultivated ginseng was grown in soils that varied greatly in soil properties on coniferous, mixed, and deciduous broad-leaved stand sites of elevations between > 200mand < 1,000 m. The soil bulk density was higher in Pinus densiflora than in Larix leptolepis stand sites and higher in the < 700-m sites than in > 700-m sites. Soil pH was unaffected by the type of stand sites (pH 4.35-4.55), whereas the high-elevation sites of > 700mwere strongly acidified, with pH 4.19. The organic carbon and total nitrogen content were lower in the P. densiflora stand sites than in the deciduous broad-leaved stand sites. Available phosphorus was low in all of the stand sites. The exchangeable cationwas generally higher in the mixed and low-elevation sites than in the P. densiflora and high-elevation sites, respectively. Conclusion: These results indicate that mountain-cultivated ginseng in Korea is able to grow in very acidic, nutrient-depleted forest soils.

경남 고성 구리광산 지역의 중금속 오염특성 (Pollution Property of Heavy Metal in Goseong Cu Mine Area, Kyungsangnam-do, Korea)

  • 정철현;박현주;정일현;나춘기
    • 자원환경지질
    • /
    • 제40권4호
    • /
    • pp.347-360
    • /
    • 2007
  • 고성군에 위치한 폐구리광산의 중금속 오염범위와 정도 및 환경위해성을 평가하기 위하여 광산지역으로부터 토양과 벼를 채취하여 중금속 함량을 분석하였다. 중금속 함량은 논토양에 비해 산토양에서 훨씬 높았다. 중금속 전함량은 산토양에서 Cu>Zn>Pb>As>Cr>Cd, 논토양에서 Zn>Pb>Cu>Cr>As>Cd 순으로 감소하였으며, 0.1/1N HCl에 의한 중금속 용출량은 산토양에서 Cu>Pb>Zn>As>Cd>Cr, 논토양에서 Pb>Cu>Zn>As>Cd>Cr 순으로 나타났다. 중금속 용출비는 시료채취지점에 따라 매우 다양하였지만 평균적으로는 Cd(16%)>Pb(10%)>Cu(9%)>As(4.5%)>Zn-Cr(${\le}2.5%$)의 순이었다. 조사대상 토양들은 지각평균값에 비해 중금속이 부화되어 있으며 그 순서는 $As{\ge}Cd>Pb>Zn>Cu>Cr$이었다. 토양의 중금속 전함량 또는 용출량으로부터 계산한 오염지수는 중금속 오염이 폐구리광산 특히 삼산제일광산 주변의 산토양에 국한되어 있음을 나타내었다. 현미 중의 중금속함량은 As $nd{\sim}0.87mg/kg,\;Cd\;0.02{\sim}0.34mg/kg,\;Cu\;1.01{\sim}6.25mg/kg,\;Mn\;13.4{\sim}43.2mg/kg,\;Pb\;0.09{\sim}2.83mg/kg$$Zn\;16.5{\sim}79.1mg/kg$으로 심각하게 오염된 수준은 아니었다. 토양 pH와 함께 중금속의 용출 및 분포특성들은 이 지역 중금속 오염의 대부분이 중금속의 용해 순환보다는 폐광석과 맥석광물의 쇄설성 이동에 의해 진행되고 있음을 시사하였다.

해남 모이산 인근 토양 및 농작물의 셀레늄(Se) 분포 특성 (Characterization of Selenium (Se) Distribution in Soils and Crops at Moi-san, Haenam)

  • 김선옥;천세원;박규령;왕수균
    • 자원환경지질
    • /
    • 제48권3호
    • /
    • pp.213-219
    • /
    • 2015
  • 해남 모이산 천열수 광산 주변의 열수변질작용에 의한 암석, 토양과 농작물간의 셀레늄의 상호작용을 규명하기 위하여, 모이산 인근의 토양과 농작물 시료를 채취 분석하였다. 토양시료는 6개의 산 토양과 6개의 밭 토양을 대상으로 수분함량, pH, ICP, XRD, XRF 분석을 통해 구성 광물과 원소함량을 분석하였으며, 농작물 시료는 토양과의 관계를 파악하기 위해 이 지역에서 재배된 양파와 대파를 대상으로 원소함량을 분석하였다. 토양에 대한 XRD 분석 결과, 주요 구성광물은 석영과 장석이며, 그 외 열수변질작용에 의해 일라이트, 녹니석과 적철석을 포함하고 있는 것으로 나타났다. 산 토양과 밭 토양의 pH는 각각 4.6~4.9와 5.2~6.7로 나타났는데, 산 토양에 비하여 밭 토양의 pH가 높게 나타난 것은 영농에 의한 비료시비가 원인으로 판단되었다. 원소함량 분석 결과, 비료의 영향이 크게 작용하는 밭 토양에서 산 토양에서는 검출되지 않았던 K(24.81~79.49 ppm), Ca(29.27~116.33 ppm) 등이 다량 함유한 것으로 나타났다. 이러한 경향은 작물에서도 나타나는데, 상대적으로 높은 농도의 K(116.89~169.79 ppm), Ca(20.18~32.29 ppm)가 농작물에 흡수되어 있는 것으로 분석되었다. 토양 시료에서의 Se 함량은 18.35~70.31 ppb의 범위로 분석되어 분석 시료간 유의미한 차이를 나타내지는 않았으나, 양파(119.48~179.50 ppb)와 대파(146.65 ppb)에서는 많은 양의 Se이 검출되었다. 이는 작물에 따라 각 원소에 대한 흡수율이 상이하여 농축도 역시 다르게 나타나는 것으로 판단되었다.

건우기에 산림토양의 화학성분의 변화 (THE CHANGES OF CHEMICAL PROPERTIES OF FOREST SOILS IN DRY AND WET SEASONS)

  • CHA, Jong Whan
    • Journal of Plant Biology
    • /
    • 제7권2호
    • /
    • pp.1-8
    • /
    • 1964
  • Cha, Jong Whan (Dept. of Biology, Graduate School, Dong Kuk Univ.) The changes of chemical properties of forest soils in dry and wet seasons. Kor. Jour. Bot. VII(2): 1-8, 1964. Soil selected for the present investigation was collected from a mountain of the Forestry Experiment Station of the vicinity of Seoul. The forest communities studied were three forest and a unplanted soils. The soil samples were obtained from each forest type during dry and wet seasons. And these samples were collected from four horizons of all communities respectively. It was showed that exchangeable hydrogen was increased by rainfall, and total exchangeable base decreased in the same way. The content of nitrogen is washed away by rainfall, especially ammonium nitrogen was highly significant between dry and wet season. On the contrary, organic matter and available phosphorus were of no significant difference between dry and wet seasons. The values of pH appeared a different response in dry and wet seasons according to the plant communities. The needle-leaved forest soils showed more acidity than the broad-leaved forest soils, and the least acidity in open places. All nutrients in soil studied gradually decreased down the profiles. According to statistical analyses of the soil components among all soil horizons, total exchangeable bases in wet season indicated only significant at 1%. Exchangeable hydrogen and organic matter of the soil in dry season was particularly very low with increased depth in the profile. The fertility level of most forested soils selected for the present investigation is low according to chemical tests for available nutrient elements.

  • PDF