• Title/Summary/Keyword: motors

Search Result 3,612, Processing Time 0.028 seconds

Speed Sensorless Control of Ultrasonic Motors Using Neural Network

  • Yoshida Tomohiro;Senjyu Tomonobu;Nakamura Mitsuru;Urasaki Naomitsu;Funabashi Toshihisa;Sekine Hideomi
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.38-44
    • /
    • 2006
  • In this paper, a speed sensorless control for an ultrasonic motor (USM) using a neural network (NN) is presented. In the proposed method, rotor speed is estimated by a three-layer NN which adapts nonlinearities associated with load torque and motor temperature into control. The intrinsic properties of a USM, such as high torque for low speeds, high static torque, compact size, etc., offer great advantages for industrial applications. However, the speed property of a USM has strong nonlinear properties associated with motor temperature and load torque, which make accurate speed control difficult. These properties are considered in designing a control method through the application of mathematical models. In these strategies, a detailed speed model of the USM is required which makes actual applications impractical. In the proposed method, a three-layer NN estimates the speed of the USM from the drive frequency, the root mean square value of input voltage and the surface temperature of the USM, where no mechanical speed sensor is needed. The NN speed based estimator enables inclusion of variations in driving conditions due to input signals of the NN involved during the driving state of the USM. The disuse of sensors offers many advantages on both the cost and maintenance front. Moreover, the model free sensorless control method offers practical controller construction within a small number of parameters. To validate the proposed speed sensorless control method for a USM, experiments have been executed under several conditions.

The piezoelectric and dielectric properties of $MnO_2$ doped $0.36Pb(Sc_{1/2}Nb_{1/2})O_{3}-0.25Pb(Ni_{1/3}Nb_{2/3})O_{3}-0.39PbTiO_3$ ceramics ($MnO_2$가 첨가된 0.36PSN-0.25PNN-0.39PT세라믹스의 유전 및 압전특성)

  • Jang, Jeong-Wan;Lee, Jong-Deok;Park, Sang-Man;Lee, Sung-Gap;Park, Gi-Yun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1809-1811
    • /
    • 2000
  • High power piezoelectric materials are presently being extensively developed for applications such as ultrasonic motors and piezoelectric transformer In this study, the piezoelectric and dielectric properties of $MnO_2$ doped $0.36Pb(Sc_{1/2}Nb_{1/2})O_{3}-0.25Pb(Ni_{1/3}Nb_{2/3})O_{3}-0.39PbTiO_3$ (hereafter PSNNT), which is the morphotropic phase boundary composition of the PSN-PNN-PT system were investigated. $MnO_2$-addition into the $0.36Pb(Sc_{1/2}Nb_{1/2})O_{3}-0.25Pb(Ni_{1/3}Nb_{2/3})O_{3}-0.39PbTiO_3$ composition increases the piezoelectric coefficient up to $k_{p}{\fallingdotseq}$55.6[%] and $Q_{m}{\fallingdotseq}$252. Moreover, $MnO_2$ addition makes tetragonal phase more stable with respect to rhombohedral phase.

  • PDF

Study of Thermal Decomposition of Kevlar/EPDM (Kevlar/EPDM 고무계 내열재의 열반응 연구)

  • Kim, Yun-Chul;Jung, Sang-Ki;Kang, Yoon-Goo;Lee, Seung-Goo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.257-260
    • /
    • 2010
  • The purpose of this paper is to introduce a method to predict the case thermal insulation charred and erosion thickness as a function of the exposure time to combustion gases and in solid rocket motors. The sizing of the insulator requires a good estimation of the thermal and mechanical loads at the wall. The method is particularly suitable for internal insulation areas subjected to high radiative, convective heat fluxes and $Al_2O_3$ slag pool. The mathematical approach and lab-scale experiment were intentionally simplified in order to obtain some simple and rapid relationships particularly useful for trade-off studies and thermal insulation preliminary design. The method was utilized to compute the charred and erosion thicknesses of the insulation on the aft chamber domes. A comparison between theoretical and experimental insulator char thicknesses of the motor insulation is reported, indicating the applicability of the predictive method employed.

  • PDF

A New Test Method to Evaluate Influence of $Al_2O_3$ to Rubber Insulator in Solid Propellant Rocket Motor (고체추진기관의 $Al_2O_3$가 고무내열재에 미치는 영향을 평가하는 시험방법 연구)

  • Lee, Hyung-Sik;Kang, Yoon-Goo;Lim, Soo-Yong;Oh, Jong-Yun;Lee, Kyung-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.193-198
    • /
    • 2010
  • In solid propellant rocket motors, $Al_2O_3$, one of combustion products, can be accumulated inside a combustion chamber. A special rocket motor was designed and tested to simulate thermal reaction of rubber insulator affected by the deposited slag. We successfully demonstrated through a dynamic radioscopy that the slag was deposited at the location as designed. In this paper we present a new test method which can simulate a high temperature and pressure environment in combustion chamber to evaluate material characteristics of rubber insulator and can provide design data to decide its thickness for a new solid rocket motor. The solid rocket motor, which has an average chamber pressure of 770 psia and a burning time of 50 seconds, was tested. The results show that erosion of EPDM insulator is more affected by a gas velocity rather than by the thermal reaction of slag with a high thermal capacity.

  • PDF

Design, Test and Evaluation on the PSD with Thermal Barrier Type for Subscale Dual Pulse Rocket Motor (격막형 PSD를 적용한 소형 추진기관 설계 및 시험평가)

  • Kim, Jinyong;Kwon, Taeha;Lee, Wonbok;Cho, Wonman;Lee, Bangeop;Yun, Namgyun;Rhee, Youngwoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.6
    • /
    • pp.82-87
    • /
    • 2014
  • Dual pulse rocket motor has a rocket motor with different pulse grains divided by a pulse separation device such as a fragile bulkhead or a thermal barrier type. It distributes thrust energy very effectively via pulse separation device to improve range and terminal velocity of a missile. This paper contains the thermal barrier design and experimental analysis through ground firing tests of small dual pulse motors. The results will be applied to the design, test and evaluation of the scale up dual pulse rocket motor.

Real time phase current estimation for brushless DC motor drive system by using front current of dc-link capacitor (직류단 캐패시터 전단 전류를 이용한 상 전류 추정 알고리즘)

  • Lee, Won;Moon, Jong-Joo;Kim, Jang-Mok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.805-811
    • /
    • 2016
  • This paper proposes an estimation algorithm of phase currents of inverter systems with the planar bus bars for brush-less DC (BLDC) motors. The planar bus bar can improve the characteristic of the EMC(Electro-Magnetic Compatibility). In these inverters, a single current sensor of the dc-link measures the sum of a smooth capacitor current and phase currents of brush-less DC motor. Thus, it is essential to extract phase currents from the measured single current to control BLDC motor. Therefore, in this paper, the phase current is estimated by analyzing equivalent circuits of the BLDCM in ON and OFF periods of switching elements. The usefulness of the proposed algorithm is verified through experimental results.

Position Control of Linear Motor by Using Enhanced Cross-Coupling Algorithm (개선된 교차축 연동제어기를 이용한 리니어 모터의 위치제어)

  • Han, Sang-Oh;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.369-374
    • /
    • 2010
  • Linear motors are easily affected by load disturbances, force ripples, friction, and parameter variations because there are no mechanical transmissions that can reduce the effects of model uncertainties and external disturbance. In this study, a nonlinear adaptive controller to achieve high-speed/high-accuracy position control of a two-axis linear motor is designed. The operation of this controller is based on a cross-coupling algorithm. Nonlinear effects such as friction and force ripples are estimated and compensated for. An enhanced cross-coupling algorithm is proposed for effectively improving the biaxial contour accuracy while achieving closed-loop stability. The proposed controller is evaluated by performing computer simulations.

Design of an Economic Service Robot Hand Based on Biomimetics and TRIZ (생체 모방학과 트리즈를 이용한 보급형 서비스 로봇 핸드의 설계)

  • Ko, Hun-Keon;Cho, Chang-Hee;Kim, Kwon-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1741-1747
    • /
    • 2010
  • This work presents a study on the design of an economic service robot hand for tele-presence manipulators. The conceptual design of new robot hand is derived from biomimetics approach. Guided by the analysis of human arm' musculoskeletal structure, the fingers are actuated by cables and actuators in the forearm. High tension in the cables is achieved by screw-nut mechanism driven by DC motors. A set of combination springs is incorporated in each of the screw-nut mechanism for easy control of gripping force. The first prototype revealed difficulties with finger control and coupling problem between gripping force and wrist movement. The solutions to these problems have been derived from the contradiction analysis of TRIZ. The second design has been verified by tests on various objects with different weight and shape for full range of wrist motion.

Analysis for Combustion Characteristics of Hybrid Rocket Motor (하이브리드 로켓의 연소특성 해석)

  • 김후중;김용모;윤명원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.21-29
    • /
    • 2002
  • Hybrid propulsion systems provide many advantages in terms of stable operation and safety. However, classical hybrid rocket motors have lower fuel regression rate and combustion efficiency compared to solid propellant rocket motor. The recent research efforts are focused on the improvement of volume limitation and regression rate in the hybrid rocket engine. The present study has numerically investigated the combustion processes in the hybrid rocket engine. The turbulent combustion is represented by the eddy breakup model and Hiroyasu and Nagle and Strickland-Constable model are used for soot formation and soot oxidation. Radiative heat transfer is modeled by finite volume method. To reduce the uncertainties for convective heat transfer near solid fuel surface having strong blowing effect, the Low Reynolds number $\kappa-\varepsilon$ turbulent model is employed. Based on numerical results, the detailed discussion has been made for the turbulent combustion processes in the vortex hybrid rocket engine.

A study on combustion instability of solid rocket motor with cylinder-slot grain (실린더-슬롯형 그레인을 가진 고체로켓모터의 연소불안정 연구)

  • Lee, Dohyung;Kim, Hongjip
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.371-377
    • /
    • 2020
  • Combustion instability occurred in the combustion test of solid rocket motor with large aspect ration Length/Diameter (L/D) and cylinder-slot grain. As a result of spectral analysis of the pressure perturbation, it was confirmed that the central axis longitudinal frequency was dominant, so that the length of the cylinder part was increased to eliminate the coincidence with acoustic node. In addition, acoustic modal analysis and flow analysis were performed to analyze the cause of instability by unsteady flow structure in solid rocket motors. It was confirmed that the combustion instability is reduced by quantitative comparison of the amplitude and frequencies of the pressure inside the combustion chamber using the grain shape before and after the design change. Finally, a combustion test was performed to verify that the combustion instability was resolved as in the flow analysis.