• Title/Summary/Keyword: motor speed controller

Search Result 1,299, Processing Time 0.029 seconds

Comparative Analysis of Integer-order and Fractional-order Proportional Integral Speed Controllers for Induction Motor Drive Systems

  • Khurram, Adil;Rehman, Habibur;Mukhopadhyay, Shayok;Ali, Daniyal
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.723-735
    • /
    • 2018
  • Linear proportional-integral (PI) controllers are an attractive choice for controlling the speed of induction machines because of their simplicity and ease of implementation. Fractional-order PI (FO-PI) controllers, however, perform better than PI controllers because of their nonlinear nature and the underlying iso-damping property of fractional-order operators. In this work, an FO-PI controller based on the proposed first-order plus dead-time induction motor model and integer-order (IO) controllers, such as Ziegler-Nichols PI, Cohen-Coon PI, and a PI controller tuned via trial-and-error method, is designed. Simulation and experimental investigation on an indirect field-oriented induction motor drive system proves that the proposed FO-PI controller has better speed tracking, lesser settling time, better disturbance rejection, and lower speed tracking error compared with linear IO-PI controllers. Our experimental study also validates that the FO-PI controller maximizes the torque per ampere output of the induction machine and can effectively control the motor at low speed, in field-weakening regions, and under detuned conditions.

Speed-Sensorless Control of DC Servo Motor Using a High Gain Observer (고이득 관측기를 이용한 센서없는 직류서보전동기의 속도 제어)

  • 김상훈;김낙교
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.10
    • /
    • pp.583-590
    • /
    • 2003
  • This paper deals with speed control of DC servo motor using a high gain obserber. It was designed to estimate rotor speed of DC servo motor and it carries out speed control from the feedback of the estimated speed signal. Also, PI controller was used in speed controller. In order to verify the performance of the high gain observer which is proposed in this paper, it is compared estimate performance of Luenberger Observer and High Gain Observer with the computer simulation. Effectiveness of the proposed high gain observer is proved from the experiment to compare the case with a speed sensor to the case with high gain observer in the speed control of DC servo motor.

The speed control of the Single-Phase induction motor using P-I controller (비례 - 적분 제어기를 이용한 단상 유도 전동기의 속도 제어)

  • Sang, Doo-Whan;Cheong, Dal-Ho;Kim, Jung-Chul;Oh, Min-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.603-605
    • /
    • 1994
  • The Single-Phase induction motor is widely used in home appliances, especially refrigerator, air conditioner and washing machine. Recently many home appliances that use the motor require the speed control to get the various and convenient functions for the customers. Generally it is so hard to control the speed of the Single-Phase induction motor and to get the wide range of the speed variation. In this raper, the speed controller using P-I is designed for the Single-Phase induct ion Motor. The experimental results of the phase controller using P-I show the wide speed control of the Single-Phase induction motor and rebuff control to load change.

  • PDF

Performance Verification of the Modified Gain Scheduling Controller by Speed Control of a DC Motor (DC 모터 제어를 통한 개선된 게인 스케줄링 제어기의 성능 검증)

  • Cheon, Min-Kyu;Park, Mig-Non;Hyun, Chang-Ho;Lee, Hee-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.312-314
    • /
    • 2006
  • This paper describes performance of the modified gain scheduling controller by speed control of a DC motor. The modified gain scheduling controller can perform tracking at more than one equilibrium points. The modified gain scheduling controller which considers transient response according to added zero shows better result of tracking performance than the unmodified gain scheduling controller shows.

  • PDF

New Fuzzy Controller for Speed Control of Induction Motor Drive (유도전동기 드라이브의 속도제어를 위한 새로운 퍼지제어기)

  • Lee, Jung-Chul;Lee, Hong-Gyun;Jung, Tack-Gi;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.224-227
    • /
    • 2002
  • This paper is proposed new fuzzy controller for speed control of induction motor drive. New fuzzy controller take out appropriate amounts of accumulated control input according to fuzzily described situations in addition to the incremental control input calculated by conventional direct fuzzy controller. The structures of the proposed controller is motivated by the problems of direct fuzzy controller. Proposed controller fuzzily clear out integrated quantifies according to situation. This paper attempts to provide a thorough comparative insight into the behavior of induction motor drive with direct and new fuzzy speed controller. The validity of the comparative results is confirmed by simulation results for induction motor drive system.

  • PDF

Design and Analysis of Large Induction Motor Control Coping with Voltage Sag (순간전압강하 극복을 위한 대용량 유도전동기 제어방식 설계 및 해석)

  • Cho, Sung-Don;Lim, Seong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1056-1058
    • /
    • 1998
  • Voltage dips caused by transmission system faults are usually of a short duration. High speed relaying and breaker operation will typically limit the disturbance to 0.1 seconds. Most motor controllers obtain their control power directly from the bus by means of a control transformer. Under this condition, a voltage dip can cause the contactor to drop out. disconnecting the motor from the line. The rapid re-energizing of the controller is in effect a fast reclosure which may result in motor damage. The time delay re-energizing of controller will result in a greater loss of speed and possibly loss of stability. Other means of controller can be used to prevent the motor from being disconnected from line during the fault. This can be accomplished by DC power controller or mechanically latched controller. This paper demonstrates that DC power controller or mechanically latched type controller to prevent the motor from being disconnected from line during the fault is, the most effective in minimizing speed reduction, transient motor current, transient motor torque and transient shaft torque by EMTP calculation.

  • PDF

Design of BLDC Motor Controller for Electric Power Wheelchair

  • Chu, Jun-Uk;Moon, In-Hyuk;Choi, Gi-Won;Ryu, Jei-Cheong;Mun, Mu-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1509-1512
    • /
    • 2003
  • The electric power wheelchair needs to control motor torque and speed for responding to variable actions given by handling a joystick. In this paper a DSP-based BLDC motor controller using a single dc-link current sensor is presented for electric power wheelchair. It is composed by a DSP processor and three-phase inverter module. To control torque, high speed current control is achieved by the PI controller and pulse width modulation (PWM) signals with 25 kHz carrier frequency, which is performed by 200 ${\mu}sec$ cycle. The speed controller computes the new direct current reference from the speed error and the PI control equation. The displacement value by handling the joystick is converted to reference speeds of right and left wheel motors using nonholonomic wheelchair kinematics. Experimental results show that the presented control system is enough to implement a speed servo in wheelchair driving.

  • PDF

Novel Wavelet-Fuzzy Based Indirect Field Oriented Control of Induction Motor Drives

  • Febin Daya, J.L.;Subbiah, V.;Atif, Iqbal;Sanjeevikumar, Padmanaban
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.656-668
    • /
    • 2013
  • This paper presents a wavelet-fuzzy based controller for indirect field oriented control of three-phase induction motor drives. The discrete wavelet transform is used to decompose the error between the actual speed and the command speed of the induction motor drive into different frequency components. The transformed error coefficients along with the scaling gains are used for generating the control component of the motor. Self-tuning fuzzy logic is used for online tuning of the scaling gains of the controller. The proposed controller has the ability to meet the speed tracking requirements in the closed loop system. The complete indirect field oriented control scheme incorporating the proposed wavelet-fuzzy based controller is investigated theoretically and simulated under various dynamic operating conditions. The simulation results are compared with a conventional proportional integral controller and a fuzzy based controller. The speed control scheme incorporating the proposed controller is implemented in real time using a digital processor control board. Simulation and experimental results validate the effectiveness of the proposed controller.

A Study on the Speed Control of BLDC Motor Using the Feedforward Compensation (전향보상을 이용한 BLDC 모터의 속도제어에 관한 연구)

  • Park K.H.;Kim T.S.;Kim K.H.;Hyun D.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.663-666
    • /
    • 2003
  • This paper presents a speed controller method based on the disturbance torque observer of high performance brushless DC (BLDC) motor drives. In case of the speed control of robot arms and tracking applications with lower stiffness, we cannot design the speed controller gain to be very large from tile viewpoint of the system stability. Thus, the feedforward compensator using disturbance torque observer was proposed. This method can improve the speed characteristic without increasing the speed controller gain. The enhanced speed control performance can be achieved and the speed response against the disturbance torque can be Improved for high-performance BLDC motor drive systems in which the bandwidth of tile speed controller cannot be made large enough. Consequently, speed control for high-performance BLDC motor drives become improved. The simulation results for BLDC motor drive systems confirm the validity of the proposed method.

  • PDF

Reduction of Periodic Speed Ripple of Electric Machines Using Resonant Controller and Repetitive Controller (공진제어기와 반복제어기를 사용한 전동기의 주기적인 속도 리플 저감)

  • Jung, Sung-Min;Lee, Jung-Ho;Choi, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1434-1446
    • /
    • 2018
  • This paper presents new speed control strategy for periodic load torque injected in AC motor. If motor drive system has a periodic load torque, it causes a periodic motor speed ripple bringing about vibrations and noises. This paper proposed new control method consisting of PIR(proportional-integral-resonant) controller and repetitive controller. PIR controller controls DC, low frequency and fundamental components and repetitive controller controls other harmonics. The performance has been verified through computer simulations using MATLAB Simulink and experiments.